
MÃ²nica Ardanuy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of woven meta-materials for electronic textiles for functional applications. Journal of the Textile Institute, 2023, 114, 763-773.	1.9	1
2	Effects of the fabric substrate on performance and durability of textile-embroidered dipole antennas. Textile Reseach Journal, 2022, 92, 2808-2817.	2.2	3
3	Experimental characterization of comfort performance parameters and multi-criteria sustainability assessment of recycled textile-reinforced cement facade cladding. Journal of Cleaner Production, 2022, 356, 131900.	9.3	20
4	Characterization of a textile waste nonwoven fabric reinforced cement composite for non-structural building components. Construction and Building Materials, 2021, 276, 122179.	7.2	36
5	Interface Strength and Fiber Content Influence on Corn Stover Fibers Reinforced Bio-Polyethylene Composites Stiffness. Polymers, 2021, 13, 768.	4.5	9
6	Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications. Case Studies in Construction Materials, 2021, 14, e00492.	1.7	34
7	A Textile Waste Fiber-Reinforced Cement Composite: Comparison between Short Random Fiber and Textile Reinforcement. Materials, 2021, 14, 3742.	2.9	32
8	Study of the fire and thermal behaviour of façade panels made of natural fibre-reinforced cement-based composites. Construction and Building Materials, 2021, 302, 124195.	7.2	17
9	Thermodynamic and kinetic parameters of polyester dyeing with Disperse Blue 56 using bio-based auxiliaries and co-solvent microemulsion. Textile Reseach Journal, 2020, 90, 523-536.	2.2	3
10	New strategy for grafting hydrophobization of lignocellulosic fiber materials with octadecylamine using a laccase/TEMPO system. International Journal of Biological Macromolecules, 2020, 160, 192-200.	7.5	5
11	Surface modification of flax nonwovens for the development of sustainable, high performance, and durable calcium aluminate cement composites. Composites Part B: Engineering, 2020, 191, 107955.	12.0	20
12	Evolution of Interfacial Shear Strength and Mean Intrinsic Single Strength in Biobased Composites from Bio-Polyethylene and Thermo-Mechanical Pulp-Corn Stover Fibers. Polymers, 2020, 12, 1308.	4.5	15
13	Evaluation of the mechanical performance and durability of binary blended CAC-MK/natural fibe composites. Construction and Building Materials, 2020, 251, 118919.	7.2	10
14	Material characterization and Monte Carlo simulation of lead and non-lead X-Ray shielding materials. Radiation Physics and Chemistry, 2020, 174, 108892.	2.8	16
15	Assessment of chemical and mechanical behavior of bamboo pulp and nanofibrillated cellulose exposed to alkaline environments. Cellulose, 2019, 26, 9269-9285.	4.9	16
16	Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of Cleaner Production, 2019, 226, 64-73.	9.3	52
17	Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cement and Concrete Research, 2019, 119, 64-76.	11.0	39
18	Study of the flexural modulus of lignocellulosic fibers reinforced bio-based polyamide11 green composites. Composites Part B: Engineering, 2018, 152, 126-132.	12.0	23

MÃ²NICA ARDANUY

#	Article	IF	CITATIONS
19	Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries. Polymers, 2018, 10, 200.	4.5	25
20	Gas Dissolution Foaming as a Novel Approach for the Production of Lightweight Biocomposites of PHB/Natural Fibre Fabrics. Polymers, 2018, 10, 249.	4.5	15
21	Towards More Sustainable Material Formulations: A Comparative Assessment of PA11-SGW Flexural Performance versus Oil-Based Composites. Polymers, 2018, 10, 440.	4.5	18
22	Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 2018, 10, 717.	4.5	19
23	Rheology of CAC-based cement pastes and the relationship to penetrability through nonwoven fabric reinforcements. Cement and Concrete Composites, 2018, 94, 85-93.	10.7	16
24	Mechanical Performance of Flax Nonwoven-Calcium Aluminate Cement Composites. RILEM Bookseries, 2018, , 375-382.	0.4	3
25	Effects of hydrothermal aging on the water uptake and tensile properties of PHB/flax fabric biocomposites. Polymer Degradation and Stability, 2017, 142, 129-138.	5.8	38
26	Behavior of the interphase of dyed cotton residue flocks reinforced polypropylene composites. Composites Part B: Engineering, 2017, 128, 200-207.	12.0	39
27	Using vegetable fiber nonwovens cement composites as sustainable materials for applications on ventilated faAsade systems. , 2017, , 385-397.		1
28	Tensile and Flexural Properties of Cement Composites Reinforced with Flax Nonwoven Fabrics. Materials, 2017, 10, 215.	2.9	35
29	Evaluation of Thermal and Thermomechanical Behaviour of Bio-Based Polyamide 11 Based Composites Reinforced with Lignocellulosic Fibres. Polymers, 2017, 9, 522.	4.5	26
30	Effects of Wet/Dry-Cycling and Plasma Treatments on the Properties of Flax Nonwovens Intended for Composite Reinforcing. Materials, 2016, 9, 93.	2.9	19
31	Natural fiber nonwoven reinforced cement composites as sustainable materials for building envelopes. Construction and Building Materials, 2016, 115, 230-239.	7.2	95
32	Effect of chain extender and water-quenching on the properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) foams for its production by extrusion foaming. European Polymer Journal, 2016, 85, 14-25.	5.4	9
33	Wet/Dry Cycling Durability of Cement Mortar Composites Reinforced with Micro- and Nanoscale Cellulose Pulps. BioResources, 2015, 10, .	1.0	22
34	Effect of Water Treatment on the Fiber–Matrix Bonding and Durability of Cellulose Fiber Cement Composites. Journal of Biobased Materials and Bioenergy, 2015, 9, 486-492.	0.3	3
35	Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 2015, 79, 115-128.	7.2	476
36	Characterization and Treatments of Oil Palm Frond Fibers and Its Suitability for Technical Applications. Journal of Natural Fibers, 2015, 12, 84-95.	3.1	5

MÃ²NICA ARDANUY

#	Article	IF	CITATIONS
37	Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Industrial Crops and Products, 2015, 66, 194-205.	5.2	54
38	Effects of needling parameters on some structural and physico-mechanical properties of needle-punched nonwovens. Journal of the Textile Institute, 2014, 105, 1065-1075.	1.9	24
39	Autoclaved cellulose fibre reinforced cement: Effects of silica fume. Construction and Building Materials, 2014, 66, 138-145.	7.2	14
40	Preparation of durable insecticide cotton fabrics through sol–gel treatment with permethrin. Surface and Coatings Technology, 2014, 239, 132-137.	4.8	17
41	Strategies to Improve the Mechanical Properties of Starch-Based Materials: Plasticization and Natural Fibers Reinforcement. Polimeros, 2014, 24, 36-42.	0.7	35
42	Abrasive Elements and Abrasion Resistance Tests for Car Seat Upholstery. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	1.0	5
43	Evaluation of durability to wet/dry cycling of cement mortar composites reinforced with nanofibrillated cellulose. , 2012, , 33-41.		10
44	Layered double hydroxides (LDHs) as functional fillers in polymer nanocomposites. , 2012, , 91-130.		16
45	Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams. Waste Management, 2012, 32, 256-263.	7.4	40
46	Foaming behavior, cellular structure and physical properties of polybenzoxazine foams. Polymers for Advanced Technologies, 2012, 23, 841-849.	3.2	9
47	Mg–Al Layered double hydroxide nanoparticles. Applied Clay Science, 2011, 51, 341-347.	5.2	57
48	Mechanical Properties and Morphology of Multifunctional Polypropylene Foams. Frontiers in Forests and Global Change, 2011, 30, 187-200.	1.1	9
49	Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose, 2011, 18, 281-289.	4.9	100
50	Characterization of rigid polypropyleneâ€based microcellular foams produced by batch foaming processes. Polymer Engineering and Science, 2011, 51, 2120-2128.	3.1	27
51	The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, 2011, 33, 586-595.	10.7	177
52	Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Composites Part B: Engineering, 2011, 42, 675-681.	12.0	43
53	Structure and properties of polypropylene/hydrotalcite nanocomposites. Polymer Composites, 2010, 31, 870-878.	4.6	8
54	The effect of anionic clay particles on the structure and thermomechanical behavior of sodium partially-neutralized EMAA ionomer. Journal of Applied Polymer Science, 2010, 116, NA-NA.	2.6	3

MÃ²nica Ardanuy

#	Article	IF	CITATIONS
55	Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites. Carbohydrate Polymers, 2010, 79, 200-205.	10.2	80
56	Preparation and Characterization of Cellulosic Fibre-Reinforced Polypropylene Foams. Advanced Materials Research, 2010, 123-125, 1183-1186.	0.3	2
57	Influence of EMAA compatibilizer on the structure and properties of HDPE/hydrotalcite nanocomposites prepared by melt mixing. Journal of Applied Polymer Science, 2009, 113, 950-958.	2.6	18
58	Non-isothermal crystallization kinetics and activity of filler in polypropylene/Mg–Al layered double hydroxide nanocomposites. Thermochimica Acta, 2008, 479, 45-52.	2.7	40
59	The role of poly(ethylene terephthalate-co-isophthalate) as interfacial agent in polypropylene–matrix composites. Journal of Materials Science, 2007, 42, 2782-2791.	3.7	3
60	Polypropylene/clay nanocomposites: Combined effects of clay treatment and compatibilizer polymers on the structure and properties. Journal of Applied Polymer Science, 2006, 102, 1213-1223.	2.6	34
61	Poly(propylene)/PET/Undecyl Ammonium Montmorillonite Nanocomposites. Synthesis and Characterization. Macromolecular Symposia, 2005, 221, 63-74.	0.7	13
62	Relationship between Flavor Dilution Values and Odor Unit Values in Hydroalcoholic Solutions:Â Role of Volatility and a Practical Rule for Its Estimation. Journal of Agricultural and Food Chemistry, 1998, 46, 4341-4346.	5.2	33
63	Laccase/TEMPO-mediated Graft Hydrophobization of Jute Fibers to Enhance the Mechanical Properties of Jute/PLA Composites. Fibers and Polymers, 0, , 1.	2.1	0
64	Rheology, Mechanical Performance and Penetrability through Flax Nonwoven Fabrics of Lime Pastes. , 0, , .		3