
Lutz Claes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089435/publications.pdf Version: 2024-02-01

LUTZ CLAES

#	Article	IF	CITATIONS
1	Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology, 2012, 8, 133-143.	3.5	904
2	Influence of size and stability of the osteotomy gap on the success of fracture healing. Journal of Orthopaedic Research, 1997, 15, 577-584.	1.2	446
3	Shear movement at the fracture site delays healing in a diaphyseal fracture model. Journal of Orthopaedic Research, 2003, 21, 1011-1017.	1.2	306
4	The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. Journal of Orthopaedic Research, 2002, 20, 1099-1105.	1.2	219
5	The enhancement of bone regeneration by ultrasound. Progress in Biophysics and Molecular Biology, 2007, 93, 384-398.	1.4	208
6	Biomechanical Principles and Mechanobiologic Aspects of Flexible and Locked Plating. Journal of Orthopaedic Trauma, 2011, 25, S4-S7.	0.7	95
7	Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. Journal of Orthopaedic Research, 2009, 27, 22-27.	1.2	85
8	Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue. Journal of Materials Science: Materials in Medicine, 2009, 20, 2001-2009.	1.7	67
9	Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. Journal of Orthopaedic Research, 2011, 29, 425-432.	1.2	65
10	Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. Journal of Orthopaedic Research, 2006, 24, 1178-1185.	1.2	64
11	Late Dynamization by Reduced Fixation Stiffness Enhances Fracture Healing in a Rat Femoral Osteotomy Model. Journal of Orthopaedic Trauma, 2011, 25, 169-174.	0.7	59
12	Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing. Journal of Orthopaedic Research, 2008, 26, 772-777.	1.2	51
13	Low-Intensity Ultrasound Enhances Maturation of Callus after Segmental Transport. Clinical Orthopaedics and Related Research, 2005, 430, 189-194.	0.7	44
14	Mechanical characterization of external fixator stiffness for a rat femoral fracture model. Journal of Orthopaedic Research, 2009, 27, 687-693.	1.2	42
15	Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone, 2005, 37, 491-496.	1.4	38
16	A novel model to study metaphyseal bone healing under defined biomechanical conditions. Archives of Orthopaedic and Trauma Surgery, 2009, 129, 923-928.	1.3	38
17	The mode of interfragmentary movement affects bone formation and revascularization after callus distraction. PLoS ONE, 2018, 13, e0202702.	1.1	32
18	The effect of both a thoracic trauma and a soft-tissue trauma on fracture healing in a rat model. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 82, 223-227.	1.2	24

LUTZ CLAES

#	Article	IF	CITATIONS
19	Novel systems for the application of isolated tensile, compressive, and shearing stimulation of distraction callus tissue. PLoS ONE, 2017, 12, e0189432.	1.1	14
20	Simulating lateral distraction osteogenesis. PLoS ONE, 2018, 13, e0194500.	1.1	12
21	Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. PLoS ONE, 2018, 13, e0195466.	1.1	9
22	The effect of a combined thoracic and soft-tissue trauma on blood flow and tissue formation in fracture healing in rats. Archives of Orthopaedic and Trauma Surgery, 2017, 137, 945-952.	1.3	6