
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7089246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effects of Aging on Male Mouse Pancreatic β-Cell Function Involve Multiple Events in the Regulation of Secretion: Influence of Insulin Sensitivity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 405-415.	1.7	8
2	The second-generation antipsychotic drug aripiprazole modulates the serotonergic system in pancreatic islets and induces beta cell dysfunction in female mice. Diabetologia, 2022, 65, 490-505.	2.9	9
3	The pancreatic β-cell in ageing: Implications in age-related diabetes. Ageing Research Reviews, 2022, 80, 101674.	5.0	11
4	Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia, 2022, 65, 1375-1389.	2.9	3
5	Bisphenol-S and Bisphenol-F alter mouse pancreatic β-cell ion channel expression and activity and insulin release through an estrogen receptor ERβ mediated pathway. Chemosphere, 2021, 265, 129051.	4.2	34
6	Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse. Metabolism: Clinical and Experimental, 2020, 102, 153963.	1.5	19
7	Bisphenol-A exposure during pregnancy alters pancreatic β-cell division and mass in male mice offspring: A role for ERβ. Food and Chemical Toxicology, 2020, 145, 111681.	1.8	10
8	Postprandial Lipemia Modulates Pancreatic Alpha-Cell Function in the Prediction of Type 2 Diabetes Development: The CORDIOPREV Study. Journal of Agricultural and Food Chemistry, 2020, 68, 1266-1275.	2.4	4
9	Toxic Effects of Common Environmental Pollutants in Pancreatic β-Cells and the Onset of Diabetes Mellitus. , 2019, , 764-775.		7
10	Oestrogen receptor \hat{I}^2 mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia, 2019, 62, 1667-1680.	2.9	46
11	Pancreatic alpha-cell mass in the early-onset and advanced stage of a mouse model of experimental autoimmune diabetes. Scientific Reports, 2019, 9, 9515.	1.6	25
12	Cortistatin regulates glucose-induced electrical activity and insulin secretion in mouse pancreatic beta-cells. Molecular and Cellular Endocrinology, 2019, 479, 123-132.	1.6	5
13	GATA6 Controls Insulin Biosynthesis and Secretion in Adult \hat{I}^2 -Cells. Diabetes, 2018, 67, 448-460.	0.3	25
14	Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals: Is there toxicology beyond paracelsus?. Journal of Steroid Biochemistry and Molecular Biology, 2018, 176, 16-22.	1.2	63
15	Timing of Exposure and Bisphenol-A: Implications for Diabetes Development. Frontiers in Endocrinology, 2018, 9, 648.	1.5	29
16	Mitochondria as target of endocrine-disrupting chemicals: implications for type 2 diabetes. Journal of Endocrinology, 2018, 239, R27-R45.	1.2	41
17	Endocrine-disrupting chemicals and the regulation of energy balance. Nature Reviews Endocrinology, 2017, 13, 536-546.	4.3	152
18	Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on Ca2+ entry in mouse pancreatic β-cells. Scientific Reports, 2017, 7, 11770.	1.6	74

#	Article	IF	CITATIONS
19	Pancreatic α-Cells and Insulin-Deficient Diabetes. Endocrinology, 2016, 157, 446-448.	1.4	3
20	Effects of Bisphenol A on ion channels: Experimental evidence and molecular mechanisms. Steroids, 2016, 111, 12-20.	0.8	32
21	Maternal Exposure to Bisphenol-A During Pregnancy Increases Pancreatic β-Cell Growth During Early Life in Male Mice Offspring. Endocrinology, 2016, 157, 4158-4171.	1.4	59
22	The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism: Clinical and Experimental, 2016, 65, 54-63.	1.5	71
23	PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus. Diabetologia, 2016, 59, 755-765.	2.9	33
24	Role of the clock gene <i>Revâ€erbα</i> in metabolism and in the endocrine pancreas. Diabetes, Obesity and Metabolism, 2015, 17, 106-114.	2.2	21
25	Prenatal Exposure to BPA and Offspring Outcomes. Dose-Response, 2015, 13, 155932581559039.	0.7	51
26	Enhanced glucose-induced intracellular signaling promotes insulin hypersecretion: Pancreatic beta-cell functional adaptations in a model of genetic obesity and prediabetes. Molecular and Cellular Endocrinology, 2015, 404, 46-55.	1.6	44
27	Pancreatic α Cells are Resistant to Metabolic Stress-induced Apoptosis in Type 2 Diabetes. EBioMedicine, 2015, 2, 378-385.	2.7	80
28	Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice. Amino Acids, 2015, 47, 1533-1548.	1.2	48
29	Bisphenol-A Treatment During Pregnancy in Mice: A New Window of Susceptibility for the Development of Diabetes in Mothers Later in Life. Endocrinology, 2015, 156, 1659-1670.	1.4	115
30	Pancreatic alpha-cells from female mice undergo morphofunctional changes during compensatory adaptations of the endocrine pancreas to diet-induced obesity. Scientific Reports, 2015, 5, 11622.	1.6	32
31	Glucagon Increases Beating Rate but Not Contractility in Rat Right Atrium. Comparison with Isoproterenol. PLoS ONE, 2015, 10, e0132884.	1.1	13
32	Exposure to Bisphenol-A during Pregnancy Partially Mimics the Effects of a High-Fat Diet Altering Glucose Homeostasis and Gene Expression in Adult Male Mice. PLoS ONE, 2014, 9, e100214.	1.1	144
33	Nutrient regulation of glucagon secretion: involvement in metabolism and diabetes. Nutrition Research Reviews, 2014, 27, 48-62.	2.1	38
34	Clock genes, pancreatic function, and diabetes. Trends in Molecular Medicine, 2014, 20, 685-693.	3.5	59
35	Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. Journal of Endocrinology, 2014, 223, R49-R62.	1.2	157
36	Pancreatic Alpha-Cell Dysfunction Contributes to the Disruption of Glucose Homeostasis and Compensatory Insulin Hypersecretion in Glucocorticoid-Treated Rats. PLoS ONE, 2014, 9, e93531.	1.1	34

#	Article	IF	CITATIONS
37	Insulin Hypersecretion in Islets From Diet-Induced Hyperinsulinemic Obese Female Mice Is Associated With Several Functional Adaptations in Individual β-Cells. Endocrinology, 2013, 154, 3515-3524.	1.4	70
38	Antidiabetic Actions of an Estrogen Receptor Î ² Selective Agonist. Diabetes, 2013, 62, 2015-2025.	0.3	49
39	Involvement of the Clock Gene Rev-erb alpha in the Regulation of Glucagon Secretion in Pancreatic Alpha-Cells. PLoS ONE, 2013, 8, e69939.	1.1	63
40	Role of leptin in the pancreatic β-cell: effects and signaling pathways. Journal of Molecular Endocrinology, 2012, 49, R9-R17.	1.1	117
41	The Clock Gene <i>Rev-erb</i> l̂± Regulates Pancreatic l̂²-Cell Function: Modulation by Leptin and High-Fat Diet. Endocrinology, 2012, 153, 592-601.	1.4	92
42	Functional and Structural Adaptations in the Pancreatic α-Cell and Changes in Glucagon Signaling During Protein Malnutrition. Endocrinology, 2012, 153, 1663-1672.	1.4	10
43	Model for Glucagon Secretion by Pancreatic α-Cells. PLoS ONE, 2012, 7, e32282.	1.1	20
44	Rapid Insulinotropic Action of Low Doses of Bisphenol-A on Mouse and Human Islets of Langerhans: Role of Estrogen Receptor β. PLoS ONE, 2012, 7, e31109.	1.1	191
45	Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Molecular and Cellular Endocrinology, 2012, 355, 201-207.	1.6	276
46	Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice. PLoS ONE, 2012, 7, e33814.	1.1	150
47	Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nature Reviews Endocrinology, 2011, 7, 346-353.	4.3	341
48	Regulation of KATP channel by $17\hat{l}^2$ -estradiol in pancreatic \hat{l}^2 -cells. Steroids, 2011, 76, 856-60.	0.8	6
49	Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells. Frontiers in Bioscience - Landmark, 2011, 16, 251.	3.0	39
50	Leptin downregulates expression of the gene encoding glucagon in alphaTC1-9 cells and mouse islets. Diabetologia, 2011, 54, 843-851.	2.9	28
51	The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells. Journal of Cell Science, 2011, 124, 727-734.	1.2	38
52	A role for the putative cannabinoid receptor GPR55 in the islets of Langerhans. Journal of Endocrinology, 2011, 211, 177-185.	1.2	104
53	Augmentation of insulin secretion by leucine supplementation in malnourished rats: possible involvement of the phosphatidylinositol 3-phosphate kinase/mammalian target protein of rapamycin pathway. Metabolism: Clinical and Experimental, 2010, 59, 635-644.	1.5	41
54	Preliminary report: Leucine supplementation enhances glutamate dehydrogenase expression and restores glucose-induced insulin secretion in protein-malnourished rats. Metabolism: Clinical and Experimental, 2010, 59, 911-913.	1.5	14

#	Article	IF	CITATIONS
55	Bisphenol-A: a new diabetogenic factor?. Hormones, 2010, 9, 118-126.	0.9	80
56	Reduced Insulin Secretion in Protein Malnourished Mice Is Associated with Multiple Changes in the β-Cell Stimulus-Secretion Coupling. Endocrinology, 2010, 151, 3543-3554.	1.4	30
57	Bisphenol A Exposure during Pregnancy Disrupts Glucose Homeostasis in Mothers and Adult Male Offspring. Environmental Health Perspectives, 2010, 118, 1243-1250.	2.8	392
58	The Atrial Natriuretic Peptide and Guanylyl Cyclase-A System Modulates Pancreatic β-Cell Function. Endocrinology, 2010, 151, 3665-3674.	1.4	38
59	Glucocorticoids in Vivo Induce Both Insulin Hypersecretion and Enhanced Glucose Sensitivity of Stimulus-Secretion Coupling in Isolated Rat Islets. Endocrinology, 2010, 151, 85-95.	1.4	62
60	Pancreatic islet cells: A model for calciumâ€dependent peptide release. HFSP Journal, 2010, 4, 52-60.	2.5	13
61	Minimal state models for ionic channels involved in glucagon secretion. Mathematical Biosciences and Engineering, 2010, 7, 793-807.	1.0	6
62	Inhibitory Effects of Leptin on Pancreatic $\hat{I}\pm$ -Cell Function. Diabetes, 2009, 58, 1616-1624.	0.3	68
63	Rapid Regulation of KATP Channel Activity by 17β-Estradiol in Pancreatic β-Cells Involves the Estrogen Receptor β and the Atrial Natriuretic Peptide Receptor. Molecular Endocrinology, 2009, 23, 1973-1982.	3.7	89
64	Role of iduronate-2-sulfatase in glucose-stimulated insulin secretion by activation of exocytosis. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E793-E801.	1.8	6
65	Rapid non-genomic regulation of Ca2+ signals and insulin secretion by PPARα ligands in mouse pancreatic islets of Langerhans. Journal of Endocrinology, 2009, 200, 127-138.	1.2	28
66	Lysophosphatidic acid induces Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholipase C pathway. Cellular Signalling, 2009, 21, 523-528.	1.7	37
67	The role of oestrogens in the adaptation of islets to insulin resistance. Journal of Physiology, 2009, 587, 5031-5037.	1.3	114
68	The pancreatic β-cell as a target of estrogens and xenoestrogens: Implications for blood glucose homeostasis and diabetes. Molecular and Cellular Endocrinology, 2009, 304, 63-68.	1.6	253
69	Gap junctional intercellular communication is required to maintain embryonic stem cells in a nonâ€differentiated and proliferative state. Journal of Cellular Physiology, 2008, 214, 354-362.	2.0	70
70	Glucose induces synchronous mitochondrial calcium oscillations in intact pancreatic islets. Cell Calcium, 2008, 43, 39-47.	1.1	24
71	The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids, 2008, 73, 874-879.	0.8	135
72	Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. Journal of Endocrinology, 2008, 199, 5-19.	1.2	328

#	Article	IF	CITATIONS
73	Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic α-cells by extracellular ATP and purinergic receptors. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E952-E960.	1.8	41
74	Oscillations of pH inside the Secretory Granule Control the Gain of Ca2+ Release for Signal Transduction in Goblet Cell Exocytosis. Novartis Foundation Symposium, 2008, , 132-149.	1.2	17
75	Rapid Regulation of Pancreatic α- and β- Cell Signalling Systems by Estrogens. Infectious Disorders - Drug Targets, 2008, 8, 61-64.	0.4	15
76	Different Metabolic Responses in α-, β-, and δ-Cells of the Islet of Langerhans Monitored by Redox Confocal Microscopy. Biophysical Journal, 2006, 90, 2641-2650.	0.2	50
77	Mechanisms of signal transduction in photo-stimulated secretion inPhaeocystis globosa. FEBS Letters, 2006, 580, 2201-2206.	1.3	13
78	Glucose Induces Opposite Intracellular Ca2+Concentration Oscillatory Patterns in Identified α- and β-Cells Within Intact Human Islets of Langerhans. Diabetes, 2006, 55, 2463-2469.	0.3	89
79	Bioluminescence imaging of nuclear calcium oscillations in intact pancreatic islets of Langerhans from the mouse. Cell Calcium, 2005, 38, 131-139.	1.1	19
80	InsP3 Signaling Induces Pulse-Modulated Ca2+ Signals in the Nucleus of Airway Epithelial Ciliated Cells. Biophysical Journal, 2005, 88, 3946-3953.	0.2	10
81	Novel Players in Pancreatic Islet Signaling: From Membrane Receptors to Nuclear Channels. Diabetes, 2004, 53, S86-S91.	0.3	20
82	Secretion in Unicellular Marine Phytoplankton: Demonstration of Regulated Exocytosis in Phaeocystis globosa. Plant and Cell Physiology, 2004, 45, 535-542.	1.5	66
83	Beta-Cell-Targeted Expression of a Dominant-Negative Mutant of Hepatocyte Nuclear Factor-1Â in Mice: Diabetes Model with Â-Cell Dysfunction Partially Rescued by Nonglucose Secretagogues. Diabetes, 2004, 53, S92-S96.	0.3	9
84	Nutrients Induce Different Ca2+ Signals in Cytosol and Nucleus in Pancreatic Â-Cells. Diabetes, 2004, 53, S92-S95.	0.3	17
85	Intracellular Location of KATP Channels and Sulphonylurea Receptors in the Pancreatic β-cell: New Targets for Oral Antidiabetic Agents. Current Medicinal Chemistry, 2004, 11, 2707-2716.	1.2	13
86	ATP-Independent Luminal Oscillations and Release of Ca2+ and H+ from Mast Cell Secretory Granules: Implications for Signal Transduction. Biophysical Journal, 2003, 85, 963-970.	0.2	39
87	On-line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E980-E987.	1.8	40
88	Nuclear KATP channels trigger nuclear Ca2+ transients that modulate nuclear function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9544-9549.	3.3	82
89	Low doses of the endocrine disruptor Bisphenolâ€A and the native hormone 17βâ€estradiol rapidly activate the transcription factor CREB. FASEB Journal, 2002, 16, 1671-1673.	0.2	204
90	Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal transduction in goblet cell exocytosis. Novartis Foundation Symposium, 2002, 248, 132-41; discussion 141-9, 277-82.	1.2	8

#	Article	IF	CITATIONS
91	Mouse Mast Cell Secretory Granules Can Function as Intracellular Ionic Oscillators. Biophysical Journal, 2001, 80, 2133-2139.	0.2	48
92	Nutrient modulation of polarized and sustained submembrane Ca 2+ microgradients in mouse pancreatic islet cells. Journal of Physiology, 2000, 525, 159-167.	1.3	31
93	Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes, 1999, 48, 2390-2397.	0.3	90
94	Homologous and heterologous asynchronicity between identified α-, β- and δ-cells within intact islets of Langerhans in the mouse. Journal of Physiology, 1999, 517, 85-93.	1.3	176