Kaipei Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7088967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane fouling performance of Fe-based coagulation-ultrafiltration process: Effect of sedimentation time. Environmental Research, 2021, 195, 110756.	3.7	17
2	Influence of Electrolyte Concentration on Single-Molecule Sensing of Perfluorocarboxylic Acids. Frontiers in Chemistry, 2021, 9, 732378.	1.8	3
3	Selective conversion of nitrate to nitrogen by CuNi alloys embedded mesoporous carbon with breakpoint chlorination. Journal of Water Process Engineering, 2021, 42, 102174.	2.6	6
4	Enhanced ultrafiltration membrane fouling alleviation by module rotation with Fe-based flocs. Journal of Environmental Chemical Engineering, 2021, 9, 105811.	3.3	5
5	Review—Single-Molecule Sensors Based on Protein Nanopores. Journal of the Electrochemical Society, 2021, 168, 126502.	1.3	5
6	Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy. Dalton Transactions, 2019, 48, 3809-3814.	1.6	12
7	Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega, 2019, 4, 7543-7549.	1.6	108
8	Single Nanoparticle Electrochemistry. Annual Review of Analytical Chemistry, 2019, 12, 347-370.	2.8	63
9	Revealing the Dynamics of Single-Molecule Reactions in a Single-Molecule Nanoreactor. Biophysical Journal, 2019, 116, 33a-34a.	0.2	1
10	Toward Precision Measurement and Manipulation of Singleâ€Molecule Reactions by a Confined Space. Small, 2019, 15, e1805426.	5.2	15
11	Highly Sensitive and Selective Electrochemical Detection of Dopamine using Hybrid Bilayer Membranes. ChemElectroChem, 2019, 6, 634-637.	1.7	14
12	Revealing the Dynamics of Single-Molecule Reactions in a Single-Molecule Nanoreactor. ECS Meeting Abstracts, 2019, , .	0.0	0
13	Pore-forming confined space for the innovative electrochemical methods. Current Opinion in Electrochemistry, 2018, 10, 46-53.	2.5	8
14	Individual Modified Carbon Nanotube Collision for Electrocatalytic Oxidation of Hydrazine in Aqueous Solution. ACS Applied Nano Materials, 2018, 1, 2069-2075.	2.4	12
15	Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine at Pyrroloquinoline Quinone Modified Carbon Nanotube through Single Nanoparticle Collision. Analytical Chemistry, 2018, 90, 6059-6063.	3.2	13
16	Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene frameworks. Energy and Environmental Science, 2017, 10, 1186-1195.	15.6	431
17	Highly crystallized α-FeOOH for a stable and efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 2021-2028.	5.2	140
18	Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. ACS Catalysis, 2016, 6, 3558-3568.	5.5	74

Kaipei Qiu

#	Article	IF	CITATIONS
19	Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon, 2016, 96, 622-630.	5.4	84
20	Naturally derived porous carbon with selective metal- and/or nitrogen-doping for efficient CO ₂ capture and oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 5212-5222.	5.2	65
21	Hierarchically porous graphene sheets and graphitic carbon nitride intercalated composites for enhanced oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 3209-3215.	5.2	61
22	Highly Efficient Photocatalytic H ₂ Evolution from Water using Visible Light and Structure ontrolled Graphitic Carbon Nitride. Angewandte Chemie - International Edition, 2014, 53, 9240-9245.	7.2	1,000
23	Selective morphologies of MgO via nanoconfinement on γ-Al ₂ O ₃ and reduced graphite oxide (rGO): improved CO ₂ capture capacity at elevated temperatures. CrystEngComm. 2014. 16. 8825-8831.	1.3	9