Chaomin Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7088773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Photoresponsive Rutile TiO ₂ Heterojunction with Enhanced Electron–Hole Separation for Highâ€Performance Hydrogen Evolution. Advanced Materials, 2019, 31, e1806596.	21.0	240
2	3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141. Analytical Chemistry, 2021, 93, 13373-13381.	6.5	59
3	Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching. Biosensors and Bioelectronics, 2016, 85, 205-211.	10.1	46
4	Ultrasensitive Paper-Based Photoelectrochemical Sensing Platform Enabled by the Polar Charge Carriers-Created Electric Field. Analytical Chemistry, 2020, 92, 2902-2906.	6.5	38
5	Flexible and Biocompatibility Power Source for Electronics: A Cellulose Paper Based Holeâ€Transportâ€Materialsâ€Free Perovskite Solar Cell. Solar Rrl, 2018, 2, 1800175.	5.8	37
6	Engineering paper-based visible light-responsive Sn-self doped domed SnO2 nanotubes for ultrasensitive photoelectrochemical sensor. Biosensors and Bioelectronics, 2021, 185, 113250.	10.1	34
7	A disposable paper-based electrochemiluminescence device for ultrasensitive monitoring of CEA based on Ru(bpy) ₃ ²⁺ @Au nanocages. RSC Advances, 2015, 5, 28324-28331.	3.6	33
8	Paper-Based Origami Photoelectrochemical Sensing Platform with TiO ₂ /Bi ₄ NbO ₈ Cl/Co-Pi Cascade Structure Enabling of Bidirectional Modulation of Charge Carrier Separation. Analytical Chemistry, 2018, 90, 14116-14120.	6.5	33
9	Paper-Based Constant Potential Electrochemiluminescence Sensing Platform with Black Phosphorus as a Luminophore Enabled by a Perovskite Solar Cell. Analytical Chemistry, 2020, 92, 6822-6826.	6.5	32
10	Paper based modification-free photoelectrochemical sensing platform with single-crystalline aloe like TiO2 as electron transporting material for cTnI detection. Biosensors and Bioelectronics, 2019, 131, 17-23.	10.1	26
11	Wide-Spectrum-Responsive Paper-Supported Photoelectrochemical Sensing Platform Based on Black Phosphorus-Sensitized TiO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 41062-41068.	8.0	25
12	Self-powered sensing platform equipped with Prussian blue electrochromic display driven by photoelectrochemical cell. Biosensors and Bioelectronics, 2017, 89, 728-734.	10.1	23
13	Microfluidic paper-based photoelectrochemical sensing platform with electron-transfer tunneling distance regulation strategy for thrombin detection. Biosensors and Bioelectronics, 2019, 133, 1-7.	10.1	20
14	High-Quality Perovskite Films Grown with a Fast Solvent-Assisted Molecule Inserting Strategy for Highly Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 22238-22245.	8.0	19
15	Ultrasensitive DNA Detection Based on Inorganic–Organic Nanocomposite Cosensitization and G-Quadruplex/Hemin Catalysis for Signal Amplification. ACS Applied Materials & Interfaces, 2020, 12, 42604-42611.	8.0	12
16	Growth temperature-dependent performance of planar CH ₃ NH ₃ PbI ₃ solar cells fabricated by a two-step subliming vapor method below 120 °C. RSC Advances, 2016, 6, 47459-47467.	3.6	7
17	Engineering dual charge transfer material modified Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S towards highly effective photocatalytic pure water splitting. Journal of Materials Chemistry C, 2022, 10, 8101-8108.	5.5	7
18	Ultrasensitive photoelectrochemical sensor enabled by a target-induced signal quencher release strategy. New Journal of Chemistry, 2020, 44, 13882-13888.	2.8	1

#	Article	IF	CITATIONS
19	Modulating Charge Carrier Efficient Separation Enabled by Lewis Base Modification in Paperâ€based Photoelectrochemical Sensor. Electroanalysis, 2022, 34, 258-262.	2.9	1