
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7088712/publications.pdf Version: 2024-02-01

ΤΗ Ι ΛΑΠΑΘΕ

#	Article	IF	CITATIONS
1	Modeling of stiffness of FRP composites under elevated and high temperatures. Composites Science and Technology, 2008, 68, 3099-3106.	7.8	172
2	Flexural behavior of a hybrid FRP and lightweight concrete sandwich bridge deck. Composites Part A: Applied Science and Manufacturing, 2007, 38, 879-889.	7.6	116
3	Adhesively bonded lap joints from pultruded GFRP profiles. Part I: stress–strain analysis and failure modes. Composites Part B: Engineering, 2005, 36, 331-340.	12.0	108
4	Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 2007, 67, 3098-3109.	7.8	107
5	Modeling of thermal responses for FRP composites under elevated and high temperatures. Composites Science and Technology, 2008, 68, 47-56.	7.8	105
6	Structural Concept, Design, and Experimental Verification of a Glass Fiber-Reinforced Polymer Sandwich Roof Structure. Journal of Composites for Construction, 2008, 12, 454-468.	3.2	96
7	Long-Term Performance of a Glass Fiber-Reinforced Polymer Truss Bridge. Journal of Composites for Construction, 2007, 11, 99-108.	3.2	84
8	Adhesively bonded connections in the context of timber engineering – A Review. Journal of Adhesion, 2017, 93, 257-287.	3.0	70
9	Adhesively bonded lap joints from pultruded GFRP profiles. Part II: joint strength prediction. Composites Part B: Engineering, 2005, 36, 341-350.	12.0	69
10	Probabilistic strength prediction for double lap joints composed of pultruded GFRP profiles – Part II: Strength prediction. Composites Science and Technology, 2006, 66, 1915-1930.	7.8	62
11	Dimensioning method for bolted, adhesively bonded, and hybrid joints involving Fibre-Reinforced-Polymers. Composites Part B: Engineering, 2013, 46, 179-187.	12.0	56
12	Influence of stress-reduction methods on the strength of adhesively bonded joints composed of orthotropic brittle adherends. International Journal of Adhesion and Adhesives, 2010, 30, 583-594.	2.9	54
13	Rods glued in engineered hardwood products part I: Experimental results under quasi-static loading. International Journal of Adhesion and Adhesives, 2019, 90, 163-181.	2.9	47
14	The impact of defects on the capacity of timber joints with glued-in rods. International Journal of Adhesion and Adhesives, 2016, 65, 33-40.	2.9	44
15	Long-term performance of adhesively bonded timber-concrete composites. International Journal of Adhesion and Adhesives, 2017, 72, 51-61.	2.9	44
16	Probabilistic strength prediction for double lap joints composed of pultruded GFRP profiles part I: Experimental and numerical investigations. Composites Science and Technology, 2006, 66, 1903-1914.	7.8	43
17	Experimental and numerical investigations on full-scale adhesively bonded timber trusses. Materials and Structures/Materiaux Et Constructions, 2011, 44, 1745-1758.	3.1	42
18	Strength Prediction for Rounded Dovetail Connections Considering Size Effects. Journal of Engineering Mechanics - ASCE, 2010, 136, 358-366.	2.9	40

#	Article	IF	CITATIONS
19	Adhesively bonded steel tubes — Part I: Experimental investigations. International Journal of Adhesion and Adhesives, 2019, 90, 199-210.	2.9	38
20	Adhesively bonded lap joints from pultruded GFRP profiles. Part III: Effects of chamfers. Composites Part B: Engineering, 2006, 37, 328-336.	12.0	37
21	Numerical investigations and capacity prediction of G-FRP rods glued into timber. Composite Structures, 2018, 202, 47-59.	5.8	37
22	Experimental and numerical investigations on adhesively bonded timber joints. Wood Science and Technology, 2012, 46, 579-590.	3.2	35
23	Hybrid adhesively bonded timber-concrete-composite floors. International Journal of Adhesion and Adhesives, 2020, 97, 102490.	2.9	35
24	Delamination of pultruded glass fiber-reinforced polymer composites subjected to axial compression. Composite Structures, 2009, 91, 66-73.	5.8	34
25	Probabilistic strength prediction of adhesively bonded timber joints. Wood Science and Technology, 2012, 46, 503-513.	3.2	34
26	Adhesively bonded steel tubes – Part II: Numerical modelling and strength prediction. International Journal of Adhesion and Adhesives, 2019, 90, 211-224.	2.9	34
27	Optimum thickness of joints made of GFPR pultruded adherends and polyurethane adhesive. Composite Structures, 2010, 92, 2102-2108.	5.8	30
28	Structural performance of rounded dovetail connections: experimental and numerical investigations. European Journal of Wood and Wood Products, 2011, 69, 471-482.	2.9	30
29	Adhesively Bonded Hardwood Joints under Room Temperature and Elevated Temperatures. Journal of Adhesion, 2014, 90, 401-419.	3.0	30
30	Adhesively bonded timber joints – Do defects matter?. International Journal of Adhesion and Adhesives, 2014, 55, 12-17.	2.9	30
31	Rods glued in engineered hardwood products part II: Numerical modelling and capacity prediction. International Journal of Adhesion and Adhesives, 2019, 90, 182-198.	2.9	30
32	Adhesively bonded joints composed of pultruded adherends: Considerations at the upper tail of the material strength statistical distribution. Probabilistic Engineering Mechanics, 2009, 24, 358-366.	2.7	29
33	Numerical Modeling of Hybrid-bonded Joints. Journal of Adhesion, 2016, 92, 652-664.	3.0	29
34	Influence of imperfections on the load capacity and stiffness of glued-in rod connections. Construction and Building Materials, 2019, 226, 200-211.	7.2	27
35	Inductively cured glued-in rods in timber using Curie particles. International Journal of Adhesion and Adhesives, 2016, 70, 37-45.	2.9	23
36	Experimental and numerical investigations on adhesively bonded hardwood joints. International Journal of Adhesion and Adhesives, 2012, 37, 65-69.	2.9	22

#	Article	IF	CITATIONS
37	Hybrid joining of jacket structures for offshore wind turbines – Validation under static and dynamic loading at medium and large scale. Engineering Structures, 2022, 252, 113595.	5.3	22
38	Pre-applicable structural adhesives for timber engineering: Clued-in G-FRP rods. International Journal of Adhesion and Adhesives, 2016, 67, 121-127.	2.9	21
39	Hardwood rods glued into softwood using environmentally sustainable adhesives. Journal of Adhesion, 2018, 94, 991-1016.	3.0	20
40	Influence of manufacturing methods and imperfections on the load capacity of glued-in rods. Journal of Adhesion, 2020, 96, 738-759.	3.0	20
41	Under water glued stud bonding fasteners for offshore structures. International Journal of Adhesion and Adhesives, 2020, 98, 102533.	2.9	19
42	Direct load transmission in hybrid FRP and lightweight concrete sandwich bridge deck. Composites Part A: Applied Science and Manufacturing, 2008, 39, 478-487.	7.6	18
43	Load bearing and failure behaviour of adhesively bonded glass-metal joints in façade structures. Journal of Adhesion, 2019, 95, 653-674.	3.0	18
44	Fracture mechanics based joint capacity prediction of glued-in rods with beech laminated veneer lumber. Journal of Adhesion, 2019, 95, 405-424.	3.0	17
45	Experimental investigations and probabilistic strength prediction of linear welded double lap joints composed of timber. International Journal of Adhesion and Adhesives, 2012, 39, 42-48.	2.9	16
46	Accelerated curing of glued-in threaded rods by means of inductive heating – Part I: experiments. Journal of Adhesion, 2021, 97, 225-250.	3.0	16
47	Moment resisting connections composed of friction-welded spruce boards: experimental investigations and numerical strength prediction. European Journal of Wood and Wood Products, 2014, 72, 229-241.	2.9	15
48	Tensile and fatigue investigations of timber joints with glued-in FRP rods. Journal of Adhesion, 2017, 93, 926-942.	3.0	15
49	Experimental and Numerical Investigations of Groove Connections for a Novel Timber-Concrete-Composite System. Journal of Performance of Constructed Facilities, 2014, 28, .	2.0	14
50	Numerical simulation of the propagation of Lamb waves and their interaction with defects in C-FRP laminates for non-destructive testing. Advanced Composite Materials, 2020, 29, 423-441.	1.9	14
51	Accelerated curing of G-FRP rods glued into timber by means of inductive heating using Curie-particles – large-scale experiments at room temperature. Journal of Adhesion, 2021, 97, 1532-1560.	3.0	14
52	Capacity prediction of welded timber joints. Wood Science and Technology, 2012, 46, 333-347.	3.2	13
53	An efficient numerical model for the evaluation of compression flow of high-viscosity adhesives. International Journal of Adhesion and Adhesives, 2018, 85, 251-262.	2.9	13
54	Design and dimensioning of a complex timber-glass hybrid structure: the IFAM pedestrian bridge. Glass Structures and Engineering, 2016, 1, 3-18.	1.7	12

#	Article	IF	CITATIONS
55	Experimental investigations on pre-tensioned hybrid joints for structural steel applications. Journal of Adhesion, 2023, 99, 117-152.	3.0	12
56	Experimental investigations of glued-in rod connections in CLT. Construction and Building Materials, 2022, 324, 126680.	7.2	12
57	Hybrid joining of jacket structures for offshore wind turbines – Determination of requirements and adhesive characterisation. Engineering Structures, 2022, 259, 114186.	5.3	12
58	Probabilistische Bemessung von geklebten Anschlüssen im Holzbau. Bautechnik, 2010, 87, 623-629.	0.1	11
59	Modelling and strength prediction of pre-tensioned hybrid bonded joints for structural steel applications. Journal of Adhesion, 2022, 98, 1573-1613.	3.0	11
60	Accelerated curing of glued-in threaded rods by means of inductive heating — part IV: curing under low temperatures. Journal of Adhesion, 2022, 98, 105-130.	3.0	10
61	Glued-in multiple steel rod connections in cross-laminated timber. Journal of Adhesion, 2022, 98, 810-826.	3.0	10
62	Manufacturing gluing-in-rods under low temperatures and with shorter process times using induction and resistive heating. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 575-580.	2.5	9
63	Accelerated curing of glued-in threaded rods by means of inductive heating – part II: modelling. Journal of Adhesion, 2021, 97, 251-281.	3.0	9
64	Critical review on the assessment of glulam structures using shear core samples. Journal of Civil Structural Health Monitoring, 2012, 2, 65-72.	3.9	8
65	Short-time procedure for fatigue assessment of beech wood and adhesively bonded beech wood joints. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2161-2170.	3.1	8
66	Fatigue of glued-in rods in engineered hardwood products — part I: experimental results. Journal of Adhesion, 2019, 95, 675-701.	3.0	8
67	Accelerated curing of glued-in threaded rods by means of inductive heating – Part III: transient curing. Journal of Adhesion, 2021, 97, 705-729.	3.0	8
68	Development and validation of a compression flow model of non-Newtonian adhesives. Journal of Adhesion, 2022, 98, 1260-1297.	3.0	7
69	Shear loaded friction-welded crosswise arranged timber boards. International Journal of Adhesion and Adhesives, 2017, 72, 109-116.	2.9	6
70	Hybrid joining techniques. , 2021, , 353-381.		6
71	Resistive curing of glued-in rods. Construction and Building Materials, 2021, 268, 121127.	7.2	6
72	GFRP posts for railway noise barriers – Experimental validation of load-carrying performance and durability. Composite Structures, 2008, 85, 116-125.	5.8	5

#	Article	IF	CITATIONS
73	Accelerated curing of G-FRP rods glued into timber by means of inductive heating $\hat{a} \in$ "Influences of curing kinetics. Journal of Adhesion, 0, , 1-39.	3.0	4
74	Towards the efficient modelling of trapped air pockets during squeeze flow. Experimental and Computational Multiphase Flow, 2023, 5, 29-52.	3.9	4
75	Geklebte Kreishohlprofilanschlüsse in Stahlkonstruktionen. Stahlbau, 2016, 85, 828-835.	0.1	3
76	Filament breaking length – Experimental and numerical investigations. International Journal of Adhesion and Adhesives, 2018, 87, 47-63.	2.9	3
77	Fatigue of glued-in rods in engineered hardwood products — Part II: Numerical modelling. Journal of Adhesion, 2019, 95, 702-722.	3.0	3
78	Transformation of tribological modelling of squeeze flows to simulate the flow of highly viscous adhesives and sealants in manufacturing processes. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900056.	0.2	3
79	Accelerated curing of adhesively bonded G-FRP tube connections—Part III: Modelling of strength. Composite Structures, 2021, 268, 113900.	5.8	3
80	Curie-supported accelerated curing by means of inductive heating – Part I: Model building. Journal of Adhesion, 2022, 98, 1394-1437.	3.0	3
81	Experimental validation of a compression flow model of Non-Newtonian adhesives. Journal of Adhesion, 2022, 98, 2295-2324.	3.0	3
82	Numerical modelling and strength prediction of welded double lap joints made of timber. Procedia Engineering, 2011, 10, 1309-1314.	1.2	2
83	Building and construction steel and aluminium. , 2021, , 525-569.		2
84	Fast inductive curing of adhesively bonded glass-timber joints. Journal of Adhesion, 0, , 1-35.	3.0	2
85	Effects of Curie particle induced accelerated curing on thermo-mechanical performance of 2K structural adhesives – Part II: Lap shear properties. Journal of Adhesion, 2022, 98, 1167-1217.	3.0	2
86	Effects of Curie particle induced accelerated curing on thermo mechanical performance of 2K structural adhesives – Part I: Bulk properties. Journal of Adhesion, 2022, 98, 1298-1339.	3.0	2
87	Curie–supported accelerated curing by means of inductive heating – Part II Validation and numerical studies. Journal of Adhesion, 2022, 98, 2045-2077.	3.0	2
88	Low-temperature curing of adhesives $\hat{a} \in $ Large-scale experiments. Journal of Adhesion, 0, , 1-36.	3.0	2
89	A Probabilistic Strength Prediction Method for Adhesively Bonded Joints Composed of Wooden Adherends. Key Engineering Materials, 0, 417-418, 533-536.	0.4	1
90	The 5-minute-rod. Adhesion Adhesives and Sealants, 2015, 12, 28-31,	0.1	1

#	Article	IF	CITATIONS
91	Fibre Reinforced Polymers for Civil Engineering Applications. Adhesion Adhesives and Sealants, 2018, 15, 14-19.	0.1	1
92	Accelerated curing of glued-in rods: Influence of manufacturing defects. Construction and Building Materials, 2021, 298, 123665.	7.2	1
93	Modeling of Direct Load Transmission in Lightweight-Concrete-Core Sandwich Beams. ACI Structural Journal, 2009, 106, .	0.2	1
94	Shear Resistance of Lightweight Concrete Core of Fiber-Reinforced Polymer Concrete Sandwich Structure. ACI Materials Journal, 2009, 106, .	0.2	1
95	Load-carrying capacity prediction of single rods glued into cross-laminated timber. European Journal of Wood and Wood Products, 2022, 80, 1041-1055.	2.9	1
96	Experiments and Strength Prediction of a Joint Composed of a Pultruded FRP Tube Bonded to an FRP Lamella. Key Engineering Materials, 0, 417-418, 505-508.	0.4	0
97	Experimental investigations on welded double lap joints composed of timber. Procedia Engineering, 2011, 10, 2526-2531.	1.2	0
98	Previous experience and perspectives. Adhesion Adhesives and Sealants, 2013, 10, 28-33.	0.1	0
99	Load-Bearing Behaviour of Rods Glued in Hardwood. Adhesion Adhesives and Sealants, 2018, 15, 10-15.	0.1	Ο
100	Mit voller Zuversicht hoch hinaus. Bautechnik, 2020, 97, 1-2.	0.1	0
101	Upper Tail of Material Strength Distribution and Strength Prediction of Bonded Joints Composed of Pultruded Adherends. , 2007, , 205-206.		Ο
102	Acoustic Emission in Adhesively Bonded Joints Composed of Pultruded Adherends. , 2007, , 141-142.		0
103	Direct load transmission in sandwich slabs with lightweight concrete core. , 2008, , 181-181.		О
104	Bauwesen. , 2018, , 313-334.		0
105	A Weibull-Based Method to Predict the Strength of Adhesively Bonded Joints of Pultruded FRPS. , 2006, , 375-376.		0
106	Think global, publish local…. Bautechnik, 2021, 98, 85-85.	0.1	0
107	Threaded rods grouted in beech laminated veneer lumber. Civil Engineering Design, 2022, 4, 110-119.	1.9	0
108	Die Jugend von heute …. Bautechnik, 2022, 99, 1-1.	0.1	0