Peter Siffalovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7088534/publications.pdf

Version: 2024-02-01

		346980	3	355658
159	2,096	22		38
papers	citations	h-index		g-index
160	160	160		3731
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	The influence of surface roughness on the presence of polymorphs and defect states in P3HT layers. Applied Surface Science, 2022, 573, 151539.	3.1	O
2	Photoswitching of 5-phenylazopyrimidines in crystalline powders and thin films. Dyes and Pigments, 2022, 199, 110066.	2.0	1
3	Thickness Dependence of Electronic Structure and Optical Properties of F8BT Thin Films. Polymers, 2022, 14, 641.	2.0	6
4	Simultaneous measurement of X-ray scattering and photoluminescence during molecular deposition. Journal of Luminescence, 2022, 248, 118950.	1.5	1
5	Wettability of MXene films. Journal of Colloid and Interface Science, 2022, 622, 759-768.	5.0	8
6	Mesoporous SnO ₂ Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 7822-7830.	2.4	9
7	Friction control by engineering the crystallographic orientation of the lubricating few-layer MoS2 films. Applied Surface Science, 2021, 540, 148328.	3.1	8
8	Diffraction pattern of Bacillus subtilis CotY spore coat protein 2D crystals. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111425.	2.5	3
9	Crystallization of 2D Hybrid Organic–Inorganic Perovskites Templated by Conductive Substrates. Advanced Functional Materials, 2021, 31, 2009007.	7.8	14
10	Polymorphism and structure formation in copper phthalocyanine thin films. Journal of Applied Crystallography, 2021, 54, 203-210.	1.9	6
11	Structure of Thin Films of [6] and [7]Phenacene and Impact of Potassium Deposition. Advanced Optical Materials, 2021, 9, 2002193.	3.6	3
12	Effect of Dexamethasone on Thermoresponsive Behavior of Poly(2-Oxazoline) Diblock Copolymers. Polymers, 2021, 13, 1357.	2.0	2
13	Nanoimaging of Orientational Defects in Semiconducting Organic Films. Journal of Physical Chemistry C, 2021, 125, 9229-9235.	1.5	8
14	Orientation of Few-Layer MoS ₂ Films: In-Situ X-ray Scattering Study During Sulfurization. Journal of Physical Chemistry C, 2021, 125, 9461-9468.	1.5	7
15	A high-throughput assembly of beam-shaping channel-cut monochromators for laboratory high-resolution X-ray diffraction and small-angle X-ray scattering experiments. Journal of Applied Crystallography, 2021, 54, 730-738.	1.9	O
16	Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes. Physical Review Materials, 2021, 5, .	0.9	5
17	Multipurpose diffractometer for <i>iin situ</i> X-ray crystallography of functional materials. Journal of Applied Crystallography, 2021, 54, 914-923.	1.9	2
18	Structural and Trapâ€6tate Density Enhancement in Flash Infrared Annealed Perovskite Layers. Advanced Materials Interfaces, 2021, 8, 2100355.	1.9	8

#	Article	IF	Citations
19	Growth of PtSe2 few-layer films on NbN superconducting substrate. Applied Physics Letters, 2021, 119, .	1.5	4
20	Targeting acute myeloid leukemia cells by CD33 receptor-specific MoS2-based nanoconjugates. Biomedical Materials (Bristol), 2021, 16, 055009.	1.7	1
21	Directional Crystallization from the Melt of an Organic p-Type and n-Type Semiconductor Blend. Crystal Growth and Design, 2021, 21, 5231-5239.	1.4	8
22	3D networks of nanopores in alumina: Structural and optical properties. Microporous and Mesoporous Materials, 2021, 325, 111306.	2.2	2
23	Angular dependence of nanofriction of mono- and few-layer MoSe2. Applied Surface Science, 2021, 567, 150807.	3.1	8
24	Highâ€Quality αâ€FAPbl ₃ Film Assisted by Lead Acetate for Efficient Solar Cells. Solar Rrl, 2021, 5, 2100747.	3.1	10
25	Combined <i>in Situ</i> Photoluminescence and X-ray Scattering Reveals Defect Formation in Lead-Halide Perovskite Films. Journal of Physical Chemistry Letters, 2021, 12, 10156-10162.	2.1	15
26	LIBS investigation of metals suitable for plasma-facing components: Characteristics and comparison of picosecond and nanosecond regimes. Fusion Engineering and Design, 2021, 172, 112898.	1.0	5
27	On the extraction of MoO x photothermally active nanoparticles by gel filtration from a byproduct of few-layer MoS2 exfoliation. Nanotechnology, 2021, 32, 045708.	1.3	2
28	TOWARD SERS-BASED DYNAMIC DETECTION OF INSULIN DIFFUSING THROUGH HYDROGEL MATRICES. , 2021, , .		0
29	Facile fabrication of Ti3C2 MXene nanosheets and their Photothermal properties. , 2021, , .		0
30	Optical Characterization of Few-Layer PtSe ₂ Nanosheet Films. ACS Omega, 2021, 6, 35398-35403.	1.6	4
31	A systematic study of MOCVD reactor conditions and Ga memory effect on properties of thick InAl(Ga)N layers: a complete depth-resolved investigation. CrystEngComm, 2020, 22, 130-141.	1.3	2
32	Novel highly substituted thiophene-based n-type organic semiconductor: structural study, optical anisotropy and molecular control. CrystEngComm, 2020, 22, 7095-7103.	1.3	2
33	Langmuir films of low-dimensional nanomaterials. Advances in Colloid and Interface Science, 2020, 283, 102239.	7.0	19
34	Uniaxial strengthening of the polyamide film by the aligned carbon nanotubes. Materials Today Communications, 2020, 25, 101432.	0.9	2
35	Collapse Mechanism in Few-Layer MoS ₂ Langmuir Films. Journal of Physical Chemistry C, 2020, 124, 15856-15861.	1.5	7
36	3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix. Nanomaterials, 2020, 10, 1363.	1.9	8

#	Article	IF	Citations
37	Increasing the effectivity of the antimicrobial surface of carbon quantum dots-based nanocomposite by atmospheric pressure plasma. Clinical Plasma Medicine, 2020, 19-20, 100111.	3.2	4
38	Molecular targeting of bioconjugated graphene oxide nanocarriers revealed at a cellular level using label-free Raman imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 30, 102280.	1.7	5
39	Correlation Between the Crystalline Phase of Molybdenum Oxide and Horizontal Alignment in Thin MoS ₂ Films. Journal of Physical Chemistry C, 2020, 124, 19362-19367.	1.5	2
40	Simultaneous Monitoring of Molecular Thin Film Morphology and Crystal Structure by X-ray Scattering. Crystal Growth and Design, 2020, 20, 5269-5276.	1.4	5
41	A bioconjugated MoS ₂ based nanoplatform with increased binding efficiency to cancer cells. Biomaterials Science, 2020, 8, 1973-1980.	2.6	8
42	Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by in Situ X-ray Diffraction. Langmuir, 2020, 36, 1898-1906.	1.6	10
43	Reorientation of π-conjugated molecules on few-layer MoS ₂ films. Physical Chemistry Chemical Physics, 2020, 22, 3097-3104.	1.3	11
44	Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chemical Engineering Journal, 2020, 394, 124959.	6.6	33
45	Langmuir–Scheaffer Technique as a Method for Controlled Alignment of 1D Materials. Langmuir, 2020, 36, 4540-4547.	1.6	15
46	Real-time tracking of the self-assembled growth of a 3D Ge quantum dot lattice in an alumina matrix. Journal of Applied Crystallography, 2020, 53, 1029-1038.	1.9	3
47	Effect of the doping of PC61BM electron transport layer with carbon nanodots on the performance of inverted planar MAPbI3 perovskite solar cells. Solar Energy, 2019, 189, 426-434.	2.9	15
48	A graphene-based hybrid material with quantum bits prepared by the double Langmuir–Schaefer method. RSC Advances, 2019, 9, 24066-24073.	1.7	9
49	Tailored Langmuir–Schaefer Deposition of Few-Layer MoS ₂ Nanosheet Films for Electronic Applications. Langmuir, 2019, 35, 9802-9808.	1.6	22
50	Diindenoperylene thin-film structure on MoS2 monolayer. Applied Physics Letters, 2019, 114, .	1.5	14
51	Highly Crystalline MoS ₂ Thin Films Fabricated by Sulfurization. Physica Status Solidi (B): Basic Research, 2019, 256, 1900342.	0.7	4
52	Polarized Raman Reveals Alignment of Few-Layer MoS ₂ Films. Journal of Physical Chemistry C, 2019, 123, 29468-29475.	1.5	14
53	Photovoltaic materials: Cu ₂ ZnSnS ₄ (CZTS) nanocrystals synthesized via industrially scalable, green, oneâ€step mechanochemical process. Progress in Photovoltaics: Research and Applications, 2019, 27, 798-811.	4.4	27
54	A Multifunctional Graphene Oxide Platform for Targeting Cancer. Cancers, 2019, 11, 753.	1.7	17

#	Article	IF	Citations
55	An elevated concentration of MoS2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoOx nanoparticles. Physical Chemistry Chemical Physics, 2019, 21, 12396-12405.	1.3	14
56	Exploiting the potential of beam-compressing channel-cut monochromators for laboratory high-resolution small-angle X-ray scattering experiments. Journal of Applied Crystallography, 2019, 52, 498-506.	1.9	4
57	Tailoring the interparticle distance in Langmuir nanoparticle films. Physical Chemistry Chemical Physics, 2019, 21, 9553-9563.	1.3	9
58	Polyethylene Glycol-Modified Poly(Styrene-co-Ethylene/Butylene-co-Styrene)/Carbon Nanotubes Composite for Humidity Sensing. Frontiers in Materials, 2019, 5, .	1.2	1
59	Evidence of relationship between strain and In-incorporation: Growth of N-polar In-rich InAlN buffer layer by OMCVD. Journal of Applied Physics, 2019, 125, .	1.1	10
60	The Antifungal Properties of Super-Hydrophobic Nanoparticles and Essential Oils on Different Material Surfaces. Coatings, 2019, 9, 176.	1.2	9
61	Characterization of the chips generated by the nanomachining of germanium for X-ray crystal optics. International Journal of Advanced Manufacturing Technology, 2019, 102, 2757-2767.	1.5	3
62	Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Scientific Reports, 2019, 9, 2001.	1.6	19
63	An experimental and theoretical study of the structural ordering of the PTB7 polymer at a mesoscopic scale. Polymer, 2019, 169, 243-254.	1.8	11
64	Functionalized graphene transistor for ultrasensitive detection of carbon quantum dots. Journal of Applied Physics, 2019, 126, 214303.	1.1	3
65	Tuning the orientation of few-layer MoS ₂ films using one-zone sulfurization. RSC Advances 2019 9 29645-29651 Effect of temperature and carrier gas on the properties of thick <mml:math< td=""><td>1.7</td><td>24</td></mml:math<>	1.7	24
66	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mi>x</mml:mi></mml:msub><mml:mrow>x<mml:mrow><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow> <td>3.1 cmml:mi</td> <td>9</td>	3.1 cmml:mi	9
67	mathvariant="normal">A <mml:mi mathvariant="normal">I</mml:mi> <mml:mro 12,="" 2019,="" 518-549.<="" and="" cells.="" commercialization="" energy="" environmental="" fabrication="" films="" from="" of="" perovskite="" scalable="" science,="" solar="" solution="" td="" towards=""><td>15.6</td><td>269</td></mml:mro>	15.6	269
68	Graphene Langmuir-Schaefer films Decorated by Pd Nanoparticles for NO ₂ and H ₂ Gas Sensors. Measurement Science Review, 2019, 19, 64-69.	0.6	7
69	Study of surface quality and subsurface damage of germanium optics produced by single point diamond nanomachining. , 2019, , .		0
70	Development of channel-cut X-ray optics for laboratory small-angle X-ray scattering setups. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e636-e636.	0.0	0
71	Finishing of Ge nanomachined surfaces for X-ray crystal optics. International Journal of Advanced Manufacturing Technology, 2018, 96, 3603-3617.	1.5	5
72	Thickness Effect on Structural Defect-Related Density of States and Crystallinity in P3HT Thin Films on ITO Substrates. Journal of Physical Chemistry C, 2018, 122, 5881-5887.	1.5	22

#	Article	IF	Citations
73	On the formation of hydrophobic carbon quantum dots Langmuir films and their transfer onto solid substrates. Diamond and Related Materials, 2018, 83, 170-176.	1.8	10
74	Structural changes in alginate-based microspheres exposed to in vivo environment as revealed by confocal Raman microscopy. Scientific Reports, 2018, 8, 1637.	1.6	14
75	Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. ACS Sustainable Chemistry and Engineering, 2018, 6, 4154-4163.	3.2	102
76	\hat{l}^2 -Cyclodextrin-epichlorohydrin polymer/graphene oxide nanocomposite: preparation and characterization. Chemical Papers, 2018, 72, 1299-1313.	1.0	30
77	Chemical Oxidation of Graphite: Evolution of the Structure and Properties. Journal of Physical Chemistry C, 2018, 122, 929-935.	1.5	38
78	Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a "micro-nano―route. Journal of Materials Science, 2018, 53, 13617-13630.	1.7	15
79	Iron Oxides Nanoparticles Langmuir-Schaeffer Multilayers for Chemoresistive Gas Sensing. Lecture Notes in Electrical Engineering, 2018, , 66-72.	0.3	0
80	Real-Time Monitoring of Growth and Orientational Alignment of Pentacene on Epitaxial Graphene for Organic Electronics. ACS Applied Nano Materials, 2018, 1, 2819-2826.	2.4	21
81	Scalable synthesis of potential solar cell absorber Cu2SnS3 (CTS) from nanoprecursors. Journal of Alloys and Compounds, 2018, 768, 1006-1015.	2.8	21
82	Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. Journal of Materials Chemistry A, 2018, 6, 15386-15394.	5.2	53
83	Simple route for the preparation of graphene/poly(styreneâ€ <i>b</i> â€butadieneâ€ <i>b</i> â€styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. Polymer International, 2018, 67, 1118-1127.	1.6	4
84	Label-free tracking of nanosized graphene oxide cellular uptake by confocal Raman microscopy. Analyst, The, 2018, 143, 3686-3692.	1.7	14
85	Kinetics of copper growth on graphene revealed by time-resolved small-angle x-ray scattering. Physical Review B, 2017, 95, .	1.1	7
86	Kinetics of Polymer–Fullerene Phase Separation during Solvent Annealing Studied by Table-Top X-ray Scattering. ACS Applied Materials & Scattering. ACS ACS Applied Materials & Scattering. ACS ACS Applied Materials & Scattering. ACS	4.0	11
87	Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric pressure. Nanotechnology, 2017, 28, 145601.	1.3	22
88	Effect of crystallinity on UV degradability of poly[methyl(phenyl)silane] by energy-resolved electrochemical impedance spectroscopy. AIP Advances, 2017, 7, .	0.6	6
89	Palladium/ \hat{I}^3 -Fe2O3 nanoparticle mixtures for acetone and NO2 gas sensors. Sensors and Actuators B: Chemical, 2017, 243, 895-903.	4.0	38
90	Effect of alkyl side chains on properties and organic transistor performance of 2,6-bis(2,2′-bithiophen-5-yl)naphthalene. Synthetic Metals, 2017, 233, 1-14.	2.1	12

#	Article	IF	Citations
91	Reliable determination of the fewâ€layer graphene oxide thickness using Raman spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 391-394.	1.2	49
92	Few-layer Graphene Langmuir-schaefer Nanofilms for H 2 Gas Sensing. Procedia Engineering, 2016, 168, 243-246.	1.2	4
93	Towards high-flux X-ray beam compressing channel-cut monochromators. Journal of Applied Crystallography, 2016, 49, 1885-1892.	1.9	5
94	Optical absorption study of P3HT:PCBM blend photo-oxidation for bulk heterojunction solar cells. Solar Energy, 2016, 134, 294-301.	2.9	33
95	XRD, SAXS, and PALS investigations of three different polymers reinforced with tetraoctylammonium exchanged montmorillonite. International Journal of Polymer Analysis and Characterization, 2016, 21, 524-536.	0.9	5
96	Waste heat recovery in solid-state lighting based on thin film thermoelectric generators. Sustainable Energy Technologies and Assessments, 2016, 18, 1-5.	1.7	3
97	Advanced optical characterization of nanostructures and nanomaterials in the X-ray range. , 2016, , .		0
98	In Situ X-Ray Reciprocal Space Mapping for Characterization of Nanomaterials., 2016,, 507-544.		1
99	Nano-machining for advanced X-ray crystal optics. AIP Conference Proceedings, 2016, , .	0.3	3
100	Real-time SAXS study of a strain gauge based on a self-assembled gold nanoparticle monolayer. Sensors and Actuators A: Physical, 2016, 241, 87-95.	2.0	4
101	Correlation between electrical parameters and defect states of polythiophene:fullerene based solar cell. Thin Solid Films, 2016, 614, 16-24.	0.8	3
102	Nanoparticle crystal formation by solvent-assisted nanoparticle self-assembly probedin situby grazing-incidence small-angle X-ray scattering. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s391-s391.	0.0	0
103	Evaluation of low-cadmium ZnCdSeS alloyed quantum dots for remote phosphor solid-state lighting technology. Applied Optics, 2015, 54, 7094.	2.1	5
104	Calculations and surface quality measurements of high-asymmetry angle x-ray crystal monochromators for advanced x-ray imaging and metrological applications. Optical Engineering, 2015, 54, 035101.	0.5	6
105	In-situ GISAXS monitoring of ultrashort period W/B ₄ C multilayer x-ray mirror growth. Proceedings of SPIE, 2015, , .	0.8	4
106	A Brief History of Nanoscience and Foresight in Nanotechnology. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 63-86.	0.1	5
107	Application of the paracrystal model to GISAXS analysis of the 3D self-assembled nanoparticle crystals. Physica Status Solidi (B): Basic Research, 2014, 251, 1169-1177.	0.7	2
108	Simulations and surface quality testing of high asymmetry angle x-ray crystal monochromators for advanced x-ray imaging applications. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	Citations
109	Nitrogen Dioxide and Acetone Sensors Based on Iron Oxide Nanoparticles. Key Engineering Materials, 2014, 605, 318-321.	0.4	1
110	Sensitivity and long-term stability of γ-Fe <inf>2</inf> 0 <inf>3</inf> and CoFe <inf>2</inf> 0 <inf>4</inf> nanoparticle gas sensors for NO <inf>2</inf> , CO and acetone sensing — A comparative study., 2014,,.		1
111	Reassembly and Oxidation of a Silver Nanoparticle Bilayer Probed by in Situ X-ray Reciprocal Space Mapping. Journal of Physical Chemistry C, 2014, 118, 7195-7201.	1.5	3
112	Fe ₃ O ₄ /γ-Fe ₂ O ₃ Nanoparticle Multilayers Deposited by the Langmuir–Blodgett Technique for Gas Sensors Application. Langmuir, 2014, 30, 1190-1197.	1.6	73
113	A non-equilibrium transient phase revealed by in situ GISAXS tracking of the solvent-assisted nanoparticle self-assembly. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2
114	Towards new multifunctional coatings for organic photovoltaics. Solar Energy Materials and Solar Cells, 2014, 125, 127-132.	3.0	13
115	Reciprocal space mapping of silver nanoparticle array re-assembly and oxidation. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C745-C745.	0.0	0
116	Preparation of sterically stabilized gold nanoparticles for plasmonic applications. Chemical Papers, $2013, 67, .$	1.0	6
117	Preparation of gold nanoparticles for plasmonic applications. Thin Solid Films, 2013, 543, 138-141.	0.8	21
118	Potential use of V-channel Ge(220) monochromators in X-ray metrology and imaging. Journal of Applied Crystallography, 2013, 46, 945-952.	1.9	8
119	Extreme X-ray beam compression for a high-resolution table-top grazing-incidence small-angle X-ray scattering setup. Journal of Applied Crystallography, 2013, 46, 1544-1550.	1.9	7
120	Process-induced inhomogeneities in higher asymmetry angle x-ray monochromators., 2013,,.		2
121	Nitric Dioxide and Acetone Sensors Based on Iron Oxide Nanoparticles. Sensor Letters, 2013, 11, 2322-2326.	0.4	12
122	Properties of Al2O3 thin films grown by atomic layer deposition. , 2012, , .		3
123	Distribution of fixed oxide charge in MOS structures with ALD grown Al $<$ inf $>$ 2 $<$ /inf $>$ 0 $<$ inf $>$ 3 $<$ /inf $>$ studied by capacitance measurements. , 2012, , .		1
124	Gas sensing properties and electrical resistance of Langmuir-Blodgett iron oxide nanoparticle arrays. , 2012, , .		0
125	GISAXS analysis of 3D nanoparticle assembliesâ€"effect of vertical nanoparticle ordering. Nanotechnology, 2012, 23, 045704.	1.3	16
126	Nanoparticle Langmuir-Blodgett Arrays for Sensing of CO and NO2 Gases. Physics Procedia, 2012, 32, 152-156.	1.2	2

#	Article	IF	CITATIONS
127	Nonequilibrium Phases of Nanoparticle Langmuir Films. Langmuir, 2012, 28, 10409-10414.	1.6	33
128	Silver Nanoparticle Monolayer-to-Bilayer Transition at the Air/Water Interface as Studied by the GISAXS Technique: Application of a New Paracrystal Model. Langmuir, 2012, 28, 9395-9404.	1.6	27
129	Null-ellipsometry investigations of the optical properties and diffusion processes in spin-valve structures based on Co and Cu. Thin Solid Films, 2012, 520, 5722-5726.	0.8	1
130	Oxide nanoparticle arrays for sensors of CO and NO2 gases. Vacuum, 2012, 86, 590-593.	1.6	15
131	Scanning magneto-optical Kerr microscope with auto-balanced detection scheme. Review of Scientific Instruments, 2011, 82, 083706.	0.6	5
132	Behavior of giant magnetoresistance in Co–Cu–Co pseudo spin-valves after magnetic annealing. Thin Solid Films, 2011, 520, 667-673.	0.8	6
133	GISAXS and AFM study of selfâ€assembled Fe ₂ O ₃ nanoparticles and Si nanodots. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2619-2622.	0.8	5
134	<i>In situ</i> GISAXS monitoring of Langmuir nanoparticle multilayer degradation processes induced by UV photolysis. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2629-2634.	0.8	11
135	Photoinduced Reconfiguration Cycle in a Molecular Adsorbate Layer Studied by Femtosecond Inner-Shell Photoelectron Spectroscopy. Physical Review Letters, 2011, 106, 107401.	2.9	28
136	Interface study of a high-performance W/B ₄ C X-ray mirror. Journal of Applied Crystallography, 2010, 43, 1431-1439.	1.9	17
137	Towards strain gauges based on a self-assembled nanoparticle monolayer—SAXS study. Nanotechnology, 2010, 21, 385702.	1.3	33
138	Modified Langmuir-Blodgett deposition of nanoparticles - measurement of 2D to 3D ordered arrays. Measurement Science Review, 2010, 10, .	0.6	32
139	Measurement of nanopatterned surfaces by real and reciprocal space techniques. Measurement Science Review, 2010, 10, .	0.6	11
140	Kinetics of Nanoparticle Reassembly Mediated by UV-Photolysis of Surfactant. Langmuir, 2010, 26, 5451-5455.	1.6	17
141	Real-time tracking of nanoparticle self-assembling using GISAXS. Superlattices and Microstructures, 2009, 46, 286-290.	1.4	4
142	Characterization of Mo/Si soft X-ray multilayer mirrors by grazing-incidence small-angle X-ray scattering. Vacuum, 2009, 84, 19-25.	1.6	27
143	Annealing behaviour of structural and magnetic properties of evaporated Co thin films. Journal Physics D: Applied Physics, 2009, 42, 135406.	1.3	27
144	Transient fs-time-resolved ESCA photoemission of iodophenylphenol molecules adsorbed as a monolayer on a silicon (100) surface. Journal of Physics: Conference Series, 2009, 194, 032053.	0.3	0

#	Article	IF	CITATIONS
145	Fabrication and Characterization of Hybrid Tunnel Magnetoresistance Structures with Embedded Self-Assembled Nanoparticle Templates. Acta Physica Polonica A, 2009, 115, 332-335.	0.2	3
146	Realâ€Time Tracking of Superparamagnetic Nanoparticle Selfâ€Assembly. Small, 2008, 4, 2222-2228.	5.2	23
147	Changes of Structure and Magnetic Properties of (Ni80Fe20/Au/Co/Au)NMultilayers as a Function of Repetition Number N. Acta Physica Polonica A, 2008, 113, 205-208.	0.2	3
148	Self-assembly of iron oxide nanoparticles studied by time-resolved grazing-incidence small-angle x-ray scattering. Physical Review B, 2007, 76, .	1.1	32
149	Correlation between x-ray reciprocal space maps and magnetic properties of current-induced magnetization switching pseudospin valve structures. Journal of Applied Physics, 2007, 101, 033538.	1.1	1
150	Advanced nanometer-size structures. Acta Physica Slovaca, 2007, 57, .	1.4	2
151	Large-scale homogeneous molecular templates for femtosecond time-resolved studies of the guest–host interaction. Journal of Biotechnology, 2004, 112, 139-149.	1.9	6
152	Multilayer EUV Optics for Applications of Ultrashort High Harmonic Pulses. Springer Series in Optical Sciences, 2004, , 229-234.	0.5	1
153	Femtosecond time-resolved core-level photoelectron spectroscopy tracking surface photovoltage transients on p –GaAs. Europhysics Letters, 2002, 60, 924-930.	0.7	79
154	Applicability of monochromatized high harmonic extended ultraviolet radiation for inner-shell photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2002, 127, 103-108.	0.8	7
155	Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy. Review of Scientific Instruments, 2001, 72, 30-35.	0.6	81
156	<title>Observation of the picosecond supercontinuum</title> ., 1999,,.		0
157	Self-Assembly of Nanoparticles at Solid and Liquid Surfaces. , 0, , .		5
158	Morphological and Electrical Properties of Stretched Nanoparticle Layers. Key Engineering Materials, 0, 644, 31-34.	0.4	6
159	Defect Formation During the Halide Perovskite Growth: Timing is the Way to Effective Passivation. , 0, , .		O