
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7088412/publications.pdf Version: 2024-02-01

IVISY YANG

#	Article	IF	CITATIONS
1	Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Analytica Chimica Acta, 2011, 708, 89-96.	2.6	124
2	Early Salt Stress Effects on the Changes in Chemical Composition in Leaves of Ice Plant and Arabidopsis. A Fourier Transform Infrared Spectroscopy Study. Plant Physiology, 2002, 130, 1032-1042.	2.3	117
3	ZnO Nanoparticle-Modified Infrared Internal Reflection Elements for Selective Detection of Volatile Organic Compounds. Analytical Chemistry, 2006, 78, 2397-2404.	3.2	75
4	Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2019, 1073, 62-71.	2.6	70
5	Rapid detection of melamine in milk liquid and powder by surface-enhanced Raman scattering substrate array. Food Control, 2015, 56, 155-160.	2.8	50
6	α-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids. Analytical Biochemistry, 2006, 359, 124-131.	1.1	44
7	Photochemical method for decoration of silver nanoparticles on filter paper substrate for SERS application. Journal of Raman Spectroscopy, 2014, 45, 574-580.	1.2	40
8	Selective Detection of Copper Ions in Aqueous Solution Based on an Evanescent Wave Infrared Absorption Spectroscopic Method. Analytical Chemistry, 2003, 75, 2262-2269.	3.2	39
9	Sensitive Cylindrical SERS Substrate Array for Rapid Microanalysis of Nucleobases. Analytical Chemistry, 2012, 84, 10277-10282.	3.2	32
10	Silver Nanoparticle-Decorated Shape-Memory Polystyrene Sheets as Highly Sensitive Surface-Enhanced Raman Scattering Substrates with a Thermally Inducible Hot Spot Effect. Analytical Chemistry, 2016, 88, 10908-10915.	3.2	31
11	Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Talanta, 2014, 130, 55-62.	2.9	29
12	Purge-and-Trap ATR/IR Spectroscopic Method for the Detection of Semivolatile Aromatic Compounds in Soils. Analytical Chemistry, 1999, 71, 4690-4696.	3.2	28
13	Gas-Assisted IR-ATR Probe for Detection of Volatile Compounds in Aqueous Solutions. Analytical Chemistry, 1999, 71, 1773-1779.	3.2	28
14	Preparation and characterization by surface-enhanced infrared absorption spectroscopy of silver nanoparticles formed on germanium substrates by electroless displacement. Analytical and Bioanalytical Chemistry, 2007, 388, 109-119.	1.9	28
15	IR chemical sensor for detection of chlorinated anilines in aqueous solutions based on ATR waveguides coated with derivatized polystyrene. Analyst, The, 2000, 125, 1605-1610.	1.7	27
16	Development of infrared optical sensor for selective detection of tyrosine in biological fluids. Biosensors and Bioelectronics, 2005, 21, 408-418.	5.3	27
17	Development of an SPME/ATR-IR chemical sensor for detection of phenol type compounds in aqueous solutions. Analyst, The, 2001, 126, 881-886.	1.7	26
18	Nanostructural Silver and Gold Substrates for Surface-Enhanced Raman Spectroscopy Measurements Prepared by Galvanic Displacement on Germanium Disks. Applied Spectroscopy, 2009, 63, 396-400.	1.2	25

#	Article	IF	CITATIONS
19	Development of Electrode-Less Plating Method for Silver Film Preparations for Surface-Enhanced Infrared Absorption Measurements. Applied Spectroscopy, 2001, 55, 399-406.	1.2	24
20	Sensitive and selective colorimetric detection of Cu ²⁺ in aqueous medium via aggregation of thiomalic acid functionalized Ag nanoparticles. Analyst, The, 2014, 139, 6304-6309.	1.7	22
21	IR Chemical Sensor for Detection of Aromatic Compounds in Aqueous Solutions Using Alkylated Polystyrene-Coated ATR Waveguides. Applied Spectroscopy, 2000, 54, 202-208.	1.2	21
22	Development of a Hollow Waveguide Sampler for Detection of Chlorinated Aromatic Compounds in Soils. Analytical Chemistry, 2000, 72, 878-884.	3.2	21
23	Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy. Mikrochimica Acta, 2015, 182, 1017-1024.	2.5	20
24	Development of an Infrared Hollow Waveguide as a Sensing Device for Detection of Organic Compounds in Aqueous Solutions. Analytical Chemistry, 1999, 71, 3740-3746.	3.2	19
25	Cooled internal reflection element for infrared chemical sensing of volatile to semi-volatile organic compounds in the headspace of aqueous solutions. Analytica Chimica Acta, 2002, 462, 235-244.	2.6	19
26	Influences of Composition on Electroless Deposition of Silver Nanoparticles on Glass Substrates for Surface-Enhanced Raman Scattering Measurements. Applied Spectroscopy, 2008, 62, 1384-1394.	1.2	19
27	Photochemical decoration of silver nanoparticles on ZnO nanowires as a threeâ€dimensional substrate for surfaceâ€enhanced Raman scattering measurement. Journal of Raman Spectroscopy, 2014, 45, 407-413.	1.2	19
28	Simultaneous Production and Surface Functionalization of Silver Nanoparticles for Label-free Colorimetric Detection of Copper Ion. Analytical Sciences, 2017, 33, 1115-1121.	0.8	19
29	Development of headspace solid-phase microextraction/attenuated total reflection infrared chemical sensing method for the determination of volatile organic compounds in aqueous solutions. Analytica Chimica Acta, 2001, 436, 31-40.	2.6	17
30	Photochemical decoration of silver nanoparticles on magnetic microspheres as substrates for the detection of adenine by surface-enhanced Raman scattering. Analytica Chimica Acta, 2014, 812, 114-120.	2.6	17
31	Tunable Coffee Ring Formation on Polycarbonate Nanofiber Film for Sensitive SERS Detection of Phenylalanine in Urine. ACS Omega, 2019, 4, 14928-14936.	1.6	17
32	Detection of chlorinated aromatic amines in aqueous solutions based on an infrared hollow waveguide sampler. Analytica Chimica Acta, 2001, 442, 267-275.	2.6	16
33	Single-Step Preparation of Silver-Doped Magnetic Hybrid Nanoparticles for the Catalytic Reduction of Nitroarenes. ACS Omega, 2018, 3, 3340-3347.	1.6	16
34	Development of a Solid-Phase Microextraction/Reflection-Absorption Infrared Spectroscopic Method for the Detection of Chlorinated Aromatic Amines in Aqueous Solutions Analytical Sciences, 2001, 17, 751-756.	0.8	15
35	Chemical Reduction Method for Preparation of Silver Nanoparticles on a Silver Chloride Substrate for Application in Surface-Enhanced Infrared Optical Sensors. Applied Spectroscopy, 2010, 64, 1094-1099.	1.2	15
36	Preparation of silver nanoparticles on zinc oxide nanowires by photocatalytic reduction for use in surfaceâ€enhanced Raman scattering measurements. Journal of Raman Spectroscopy, 2011, 42, 339-344.	1.2	15

#	Article	IF	CITATIONS
37	Characterization of cyclodextrin modified infrared chemical sensors. Part II. Selective and quantitative determination of aromatic acids. Analytica Chimica Acta, 2005, 530, 213-220.	2.6	12
38	Development of an aminocarboxylic acid-modified infrared chemical sensor for selective determination of copper ions in aqueous solutions. Analytica Chimica Acta, 2008, 611, 89-96.	2.6	12
39	Membrane-introduced infrared spectroscopic chemical sensing method for the detection of volatile organic compounds in aqueous solutions. Analyst, The, 2005, 130, 397.	1.7	10
40	Development of an aminocarboxylic acid-modified infrared chemical sensor for selective determination of tyrosine in urine. Analytica Chimica Acta, 2008, 606, 230-238.	2.6	10
41	Metal Ionâ€Assisted Infrared Optical Sensor for Selective Determination of Tryptophan in Urine Samples. Journal of the Chinese Chemical Society, 2011, 58, 435-442.	0.8	10
42	Analyte-induced photoreduction method for visual and colorimetric detection of tyrosine. Analytica Chimica Acta, 2015, 879, 111-117.	2.6	10
43	α-Cyclodextrin-modified infrared chemical sensing system that utilizes enzymatic reactions for the determination of glucose. Analytica Chimica Acta, 2005, 537, 385-392.	2.6	8
44	Characterization of Infrared Chemical Sensors Modified with ZnO Nanowires for the Detection of Volatile Organic Compounds. Applied Spectroscopy, 2005, 59, 1002-1008.	1.2	8
45	Surface-Controlled Electroless Deposition Method in the Preparation of Stacked Silver Nanoparticles on Germanium for Surface-Enhanced Infrared Absorption Measurements. Applied Spectroscopy, 2010, 64, 211-218.	1.2	8
46	Three-Dimensional Surface-Enhanced Raman Scattering Substrate Fabricated Using Chemical Decoration of Silver Nanoparticles on Electrospun Polycarbonate Nanofibers. Applied Spectroscopy, 2017, 71, 879-887.	1.2	8
47	Fiberâ€Optic Chemical Sensors: A General Review. Journal of the Chinese Chemical Society, 2002, 49, 677-692.	0.8	7
48	Seedâ€mediated growth method for electroless deposition of AgNPs on glass substrates for use in SERS measurements. Journal of Raman Spectroscopy, 2010, 41, 167-174.	1.2	7
49	para-Mercaptobenzoic acid-modified silver nanoparticles as sensing media for the detection of ammonia in air based on infrared surface enhancement effect. Analyst, The, 2011, 136, 2988.	1.7	7
50	Rhenium-Based Molecular Trap as an Evanescent Wave Infrared Chemical Sensing Medium for the Selective Determination of Amines in Air. ACS Applied Materials & Interfaces, 2016, 8, 35634-35640.	4.0	7
51	Development of an Infrared Hollow Waveguide Sampler for the Detection of Organic Compounds in Aqueous Solutions with Limited Sample Volumes Analytical Sciences, 2002, 18, 555-560.	0.8	6
52	Preparation of high-capacity substrates from polycrystalline silver chloride for the selective detection of tyrosine by surface-enhanced infrared absorption (SEIRA) measurements. Analytical and Bioanalytical Chemistry, 2011, 401, 2935-2943.	1.9	6
53	Preparation and characterization of silver film coated ZnO nanowire gas sensors based on the infrared surface enhancement effect for detection of VOCs. RSC Advances, 2014, 4, 19331.	1.7	6
54	Characterization of cyclodextrin-modified infrared chemical sensorsPart I. Modeling the mechanisms of interaction. Analytica Chimica Acta, 2004, 527, 27-36.	2.6	5

#	Article	IF	CITATIONS
55	A New Infrared Spectroelectrochemical Cell for the Detection of Species Generated by Platinum and Screen-Printed Carbon Electrodes. Electroanalysis, 2006, 18, 267-274.	1.5	5
56	Enhancement of Raman Scattering for Silver Nanoparticles Located on Electrolessly Roughened Silicon. Applied Spectroscopy, 2014, 68, 172-178.	1.2	5
57	Electroless Reduction of Silver Chloride Precipitates for the Preparation of Highly Sensitive Substrates for Surface-Enhanced Infrared Absorption (SEIRA) Measurements. Applied Spectroscopy, 2015, 69, 37-44.	1.2	5
58	Surfactant-assisted electroless deposition of silver nanoparticles on Ge crystal for ultra-sensitive detection by surface-enhanced infrared absorption spectroscopy. RSC Advances, 2015, 5, 20390-20395.	1.7	5
59	A Novel Quality Criteria for Optimization of Chromatographic Multicomponent Separations. Journal of the Chinese Chemical Society, 1999, 46, 105-114.	0.8	4
60	Comparison of SPME/Transmission IR and SPME/ATR-IR Spectroscopic Methods in Detection of Chloroanilines in Aqueous Solutions. Applied Spectroscopy, 2001, 55, 919-926.	1.2	4
61	Development of a ZnO-modified Light-Scattering Sensor for the Detection of alcohols. Analytical Sciences, 2010, 26, 443-448.	0.8	4
62	Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds. Talanta, 2011, 85, 63-69.	2.9	4
63	Infrared Chemical Sensor for Detection of Chlorinated Phenols in Aqueous Solutions Based on a ATR Waveguide Coated with Structural Designed Polymers. Journal of the Chinese Chemical Society, 2001, 48, 159-166.	0.8	3
64	Combination of Porous Membrane and FT-IR Spectrometry for Detection of Chlorinated Semivolatile Compounds in Soils. International Journal of Environmental Analytical Chemistry, 2001, 79, 199-216.	1.8	3
65	Development of the Infrared Hollow Waveguide Sampler for the Detection of Chlorophenols in Aqueous Solutions. Journal of AOAC INTERNATIONAL, 2002, 85, 163-172.	0.7	3
66	Characterization of Thio Compounds for a Surface-Controlled Electroless Deposition Method in the Preparation of Silver Nanoparticles on Germanium for Surface-Enhanced Infrared Absorption Measurements. Applied Spectroscopy, 2010, 64, 219-230.	1.2	3
67	Reflection–absorption infrared sensing device for detection of semivolatile aromatic compounds in soils. International Journal of Environmental Analytical Chemistry, 2004, 84, 1045-1058.	1.8	2
68	Development of the Headspace SPME/ATRâ€IR Method for Detection of Chlorinated Aromatic Compounds in Soils. Journal of the Chinese Chemical Society, 2004, 51, 761-768.	0.8	2
69	Simplex Optimization of PCA-Based Infrared Expert Systems. Analytical Chemistry, 1999, 71, 960-967.	3.2	1
70	Infrared Reflection-Absorption Method for the Detection of Aromatic Compounds in Aqueous Solutions with Limited Sample Volumes Analytical Sciences, 2002, 18, 1247-1252.	0.8	1
71	Probing Surface Enhancement Effect of Molecules On/Between Silver Nanoparticles in Surface Enhanced Raman Scattering. Journal of the Chinese Chemical Society, 2013, 60, 371-379.	0.8	1
72	Distanceâ€dependent Enhancement in Raman Spectroscopy Probed by Conjugated Molecules with Different Molecular Lengths. Journal of the Chinese Chemical Society, 2014, 61, 1009-1014.	0.8	1

#	Article	IF	CITATIONS
73	Preparation of ZnO Nanowires and Study of Surfaceâ€adsorbate Interaction by Fourierâ€Transform Infrared Spectroscopy. Journal of the Chinese Chemical Society, 2014, 61, 240-246.	0.8	1
74	Development of the infrared hollow waveguide sampler for the detection of chlorophenols in aqueous solutions. Journal of AOAC INTERNATIONAL, 2002, 85, 163-72.	0.7	1
75	Self-Oriented Glucose-Modified Infrared Sensor for the Detection of Compounds Bearing Carboxylic Acid Groups. Applied Spectroscopy, 2008, 62, 38-45.	1.2	Ο
76	An oxidation layer for regulating galvanically grown silver nanoparticles on silicon crystal for highly sensitive surface-enhanced Raman scattering measurements. CrystEngComm, 2016, 18, 9275-9280.	1.3	0