Kirankumar S Mysore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087797/publications.pdf Version: 2024-02-01

		13099	24982
252	15,332	68	109
papers	citations	h-index	g-index
271	271	271	13492
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 2014, 5, 17.	3.6	554
2	Largeâ€scale insertional mutagenesis using the <i>Tnt1</i> retrotransposon in the model legume <i>Medicago truncatula</i> . Plant Journal, 2008, 54, 335-347.	5.7	442
3	Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. Plant Cell, 2020, 32, 15-41.	6.6	416
4	Nonhost resistance: how much do we know?. Trends in Plant Science, 2004, 9, 97-104.	8.8	372
5	The Root Hair "Infectome―of <i>Medicago truncatula</i> Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection. Plant Cell, 2014, 26, 4680-4701.	6.6	313
6	Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nature Protocols, 2014, 9, 1549-1562.	12.0	283
7	New dimensions for VIGS in plant functional genomics. Trends in Plant Science, 2011, 16, 656-665.	8.8	279
8	A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Current Biology, 2012, 22, 2236-2241.	3.9	262
9	Plant growth-promoting rhizobacteria systemically protectArabidopsis thalianaagainstCucumber mosaic virusby a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant Journal, 2004, 39, 381-392.	5.7	242
10	The Phytotoxin Coronatine Contributes to Pathogen Fitness and Is Required for Suppression of Salicylic Acid Accumulation in Tomato Inoculated with <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000. Molecular Plant-Microbe Interactions, 2007, 20, 955-965.	2.6	222
11	Glycolate Oxidase Modulates Reactive Oxygen Species–Mediated Signal Transduction during Nonhost Resistance in <i>Nicotiana benthamiana</i> and <i>Arabidopsis</i> Â. Plant Cell, 2012, 24, 336-352.	6.6	215
12	Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant Journal, 2004, 40, 322-331.	5.7	214
13	<i>Vapyrin</i> , a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 244-252.	5.7	211
14	Computational Estimation and Experimental Verification of Off-Target Silencing during Posttranscriptional Gene Silencing in Plants. Plant Physiology, 2006, 142, 429-440.	4.8	196
15	Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Molecular Genetics and Genomics, 1999, 261, 429-438.	2.4	177
16	NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula. Current Biology, 2019, 29, 3657-3668.e5.	3.9	177
17	Salicylic Acid and Systemic Acquired Resistance Play a Role in Attenuating Crown Gall Disease Caused by <i>Agrobacterium tumefaciens</i> Â. Plant Physiology, 2008, 146, 323-324.	4.8	163
18	An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proceedings of the United States of America, 2000, 97, 948-953.	7.1	162

#	Article	IF	CITATIONS
19	Identification of Arabidopsis rat Mutants. Plant Physiology, 2003, 132, 494-505.	4.8	159
20	Nonhost Resistance Against Bacterial Pathogens: Retrospectives and Prospects. Annual Review of Phytopathology, 2013, 51, 407-427.	7.8	149
21	<i>Medicago truncatula IPD3</i> Is a Member of the Common Symbiotic Signaling Pathway Required for Rhizobial and Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2011, 24, 1345-1358.	2.6	147
22	Monolignol ferulate conjugates are naturally incorporated into plant lignins. Science Advances, 2016, 2, e1600393.	10.3	147
23	Phytosterols Play a Key Role in Plant Innate Immunity against Bacterial Pathogens by Regulating Nutrient Efflux into the Apoplast Â. Plant Physiology, 2012, 158, 1789-1802.	4.8	146
24	Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods, 2011, 7, 32.	4.3	145
25	Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 366-371.	7.1	144
26	Control of Compound Leaf Development by <i>FLORICAULA/LEAFY</i> Ortholog <i>SINGLE LEAFLET1</i> in <i>Medicago truncatula</i> Â Â Â Â. Plant Physiology, 2008, 146, 1759-1772.	4.8	139
27	A WD40 Repeat Protein from <i>Medicago truncatula</i> Is Necessary for Tissue-Specific Anthocyanin and Proanthocyanidin Biosynthesis But Not for Trichome Development Â. Plant Physiology, 2009, 151, 1114-1129.	4.8	137
28	Regulation of anthocyanin and proanthocyanidin biosynthesis by <i><scp>M</scp>edicago truncatula</i> b <scp>HLH</scp> transcription factor <scp>M</scp> t <scp>TT</scp> 8. New Phytologist, 2016, 210, 905-921.	7.3	136
29	MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1766-1771.	7.1	135
30	DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nature Communications, 2016, 7, 12636.	12.8	135
31	<i>STENOFOLIA</i> Regulates Blade Outgrowth and Leaf Vascular Patterning in <i>Medicago truncatula</i> and <i>Nicotiana sylvestris</i> Â Â Â. Plant Cell, 2011, 23, 2125-2142.	6.6	133
32	The Medicago <i>FLOWERING LOCUS T</i> Homolog, <i>MtFTa1</i> , Is a Key Regulator of Flowering Time Â. Plant Physiology, 2011, 156, 2207-2224.	4.8	133
33	A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and <i>Medicago truncatula</i> Â Â Â. Plant Cell, 2014, 26, 1818-1830.	6.6	131
34	Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection byPseudomonas syringaepv.tomato. Plant Journal, 2002, 32, 299-315.	5.7	128
35	<i>Medicago truncatula </i> <scp>DNF</scp> 2 is a <scp>PI</scp> â€ <scp>PLC</scp> â€ <scp>XD</scp> â€eontaining protein required for bacteroid persistence and prevention of nodule early senescence and defenseâ€ike reactions. New Phytologist, 2013, 197, 1250-1261.	7.3	128
36	A systematic study to determine the extent of gene silencing in <i>Nicotiana benthamiana </i> and other Solanaceae species when heterologous gene sequences are used for virusâ€induced gene silencing. New Phytologist, 2007, 176, 782-791.	7.3	118

#	Article	IF	CITATIONS
37	Host Versus Nonhost Resistance: Distinct Wars with Similar Arsenals. Phytopathology, 2015, 105, 580-587.	2.2	118
38	<i>NODULE ROOT</i> and <i>COCHLEATA</i> Maintain Nodule Development and Are Legume Orthologs of <i>Arabidopsis BLADE-ON-PETIOLE</i> Genes. Plant Cell, 2012, 24, 4498-4510.	6.6	116
39	Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Frontiers in Plant Science, 2014, 5, 323.	3.6	114
40	An efficient reverse genetics platform in the model legume <i><scp>M</scp>edicago truncatula</i> . New Phytologist, 2014, 201, 1065-1076.	7.3	113
41	Loss of Abaxial Leaf Epicuticular Wax in <i>Medicago truncatula irg1/palm1</i> Mutants Results in Reduced Spore Differentiation of Anthracnose and Nonhost Rust Pathogens. Plant Cell, 2012, 24, 353-370.	6.6	112
42	Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 2005, 10, 229-235.	8.8	111
43	NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula. Nature Plants, 2018, 4, 942-952.	9.3	111
44	Arabidopsis VIRE2 INTERACTING PROTEIN2 Is Required for Agrobacterium T-DNA Integration in Plants. Plant Cell, 2007, 19, 1695-1708.	6.6	109
45	A <i>Medicago truncatula</i> Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation Â. Plant Physiology, 2012, 159, 1686-1699.	4.8	109
46	Virusâ€induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in <i>Nicotiana benthamiana</i> and tomato. Plant Biotechnology Journal, 2011, 9, 797-806.	8.3	108
47	Role of the Agrobacterium tumefaciens VirD2 Protein in T-DNA Transfer and Integration. Molecular Plant-Microbe Interactions, 1998, 11, 668-683.	2.6	107
48	Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Frontiers in Plant Science, 2015, 6, 503.	3.6	102
49	Local and Systemic Regulation of Plant Root System Architecture and Symbiotic Nodulation by a Receptor-Like Kinase. PLoS Genetics, 2014, 10, e1004891.	3.5	101
50	Monitoring in planta bacterial infection at both cellular and wholeâ€plant levels using the green fluorescent protein variant GFPuv. New Phytologist, 2007, 174, 212-223.	7.3	98
51	A non <scp>RD</scp> receptorâ€like kinase prevents nodule early senescence and defenseâ€like reactions during symbiosis. New Phytologist, 2014, 203, 1305-1314.	7.3	97
52	Drought Stress Acclimation Imparts Tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. International Journal of Molecular Sciences, 2013, 14, 9497-9513.	4.1	95
53	Ornithineâ€deltaâ€aminotransferase and proline dehydrogenase genes play a role in nonâ€host disease resistance by regulating pyrrolineâ€5â€carboxylate metabolismâ€induced hypersensitive response. Plant, Cell and Environment, 2012, 35, 1329-1343.	5.7	93
54	Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2013, 162, 107-115.	4.8	92

#	Article	IF	CITATIONS
55	<i>NODULES WITH ACTIVATED DEFENSE 1</i> is required for maintenance of rhizobial endosymbiosis in <i>Medicago truncatula</i> . New Phytologist, 2016, 212, 176-191.	7.3	90
56	DiVenn: An Interactive and Integrated Web-Based Visualization Tool for Comparing Gene Lists. Frontiers in Genetics, 2019, 10, 421.	2.3	85
57	A symbiosisâ€dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host–microbe interface in symbiosis. New Phytologist, 2016, 211, 1338-1351.	7.3	83
58	Diverse functions of multidrug and toxin extrusion (<scp>MATE</scp>) transporters in citric acid efflux and metal homeostasis in <i>Medicago truncatula</i> . Plant Journal, 2017, 90, 79-95.	5.7	83
59	Expression of a Finger Millet Transcription Factor, EcNAC1, in Tobacco Confers Abiotic Stress-Tolerance. PLoS ONE, 2012, 7, e40397.	2.5	83
60	Developmental Analysis of a <i>Medicago truncatula smooth leaf margin1</i> Mutant Reveals Context-Dependent Effects on Compound Leaf Development Â. Plant Cell, 2011, 23, 2106-2124.	6.6	82
61	Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Methods in Molecular Biology, 2011, 678, 179-190.	0.9	81
62	Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex Â. Plant Physiology, 2014, 166, 2077-2090.	4.8	81
63	Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10754-10759.	7.1	80
64	Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula. Frontiers in Plant Science, 2014, 5, 486.	3.6	80
65	Symbiotic root infections in <i>Medicago truncatula</i> require remorin-mediated receptor stabilization in membrane nanodomains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5289-5294.	7.1	80
66	Pathogenicity of <i>Pseudomonas syringae</i> pv. <i>tomato</i> on Tomato Seedlings: Phenotypic and Gene Expression Analyses of the Virulence Function of Coronatine. Molecular Plant-Microbe Interactions, 2008, 21, 383-395.	2.6	79
67	<i>Medicago truncatula</i> Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. New Phytologist, 2017, 216, 1223-1235.	7.3	79
68	Identification and Characterization of Plant Genes Involved in Agrobacterium-Mediated Plant Transformation by Virus-Induced Gene Silencing. Molecular Plant-Microbe Interactions, 2007, 20, 41-52.	2.6	77
69	GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana. Scientific Reports, 2017, 7, 9148.	3.3	77
70	Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula. Journal of Experimental Botany, 2017, 68, 5937-5948.	4.8	77
71	Caveat of RNAi in Plants: The Off-Target Effect. Methods in Molecular Biology, 2011, 744, 13-25.	0.9	76
72	At <scp>MBP</scp> â€1, an alternative translation product of <i><scp>LOS</scp>2</i> , affects abscisic acid responses and is modulated by the <scp>E</scp> 3 ubiquitin ligase <scp>A</scp> t <scp>SAP</scp> 5. Plant Journal, 2013, 76, 481-493.	5.7	76

#	Article	IF	CITATIONS
73	Plant Ribosomal Proteins, RPL12 and RPL19, Play a Role in Nonhost Disease Resistance against Bacterial Pathogens. Frontiers in Plant Science, 2015, 6, 1192.	3.6	71
74	<i>NO APICAL MERISTEM</i> (<i>MtNAM</i>) regulates floral organ identity and lateral organ separation in <i>Medicago truncatula</i> . New Phytologist, 2012, 195, 71-84.	7.3	68
75	The <i>N</i> â€Acylethanolamineâ€Mediated Regulatory Pathway in Plants. Chemistry and Biodiversity, 2007, 4, 1933-1955.	2.1	67
76	The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth. Plant Physiology, 2017, 174, 2469-2486.	4.8	67
77	Expression of theArabidopsishistoneH2A-1gene correlates with susceptibility toAgrobacteriumtransformation. Plant Journal, 2002, 32, 285-298.	5.7	65
78	Mutagenesis and Beyond! Tools for Understanding Legume Biology. Plant Physiology, 2009, 151, 978-984.	4.8	65
79	Global Gene Expression Profiling During <i>Medicago truncatula–Phymatotrichopsis omnivora</i> Interaction Reveals a Role for Jasmonic Acid, Ethylene, and the Flavonoid Pathway in Disease Development. Molecular Plant-Microbe Interactions, 2009, 22, 7-17.	2.6	65
80	The <i>Trans</i> -Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an <i>argonaute7</i> / <i>lobed leaflet1</i> Mutant in <i>Medicago</i> Â <i>truncatula</i> Â Â. Plant Cell, 2014, 25, 4845-4862.	6.6	64
81	NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 2021, 374, 625-628.	12.6	61
82	The <i>Medicago truncatula</i> LysM receptorâ€ike kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. New Phytologist, 2019, 223, 1516-1529.	7.3	59
83	Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. Plant Journal, 2008, 56, 336-349.	5.7	58
84	Overexpression of the Disease Resistance Gene Pto in Tomato Induces Gene Expression Changes Similar to Immune Responses in Human and Fruitfly Â. Plant Physiology, 2003, 132, 1901-1912.	4.8	57
85	Agroinoculation and Agroinfiltration: Simple Tools for Complex Gene Function Analyses. Methods in Molecular Biology, 2011, 678, 65-76.	0.9	57
86	GENERAL CONTROL NONREPRESSIBLE4 Degrades 14-3-3 and the RIN4 Complex to Regulate Stomatal Aperture with Implications on Nonhost Disease Resistance and Drought Tolerance. Plant Cell, 2017, 29, 2233-2248.	6.6	56
87	Jasmonate ZIM-Domain (JAZ) Protein Regulates Host and Nonhost Pathogen-Induced Cell Death in Tomato and Nicotiana benthamiana. PLoS ONE, 2013, 8, e75728.	2.5	56
88	Overexpression of <i>Medicago SVP</i> genes causes floral defects and delayed flowering in <i>Arabidopsis</i> but only affects floral development in <i>Medicago</i> . Journal of Experimental Botany, 2014, 65, 429-442.	4.8	55
89	Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. PeerJ, 2013, 1, e34.	2.0	55
90	MtMOT1.2 is responsible for molybdate supply to <scp><i>Medicago truncatula</i></scp> nodules. Plant, Cell and Environment, 2019, 42, 310-320.	5.7	54

#	Article	IF	CITATIONS
91	<i>pssRNAit</i> : A Web Server for Designing Effective and Specific Plant siRNAs with Genome-Wide Off-Target Assessment. Plant Physiology, 2020, 184, 65-81.	4.8	54
92	Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta, 2007, 225, 523-539.	3.2	52
93	Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops. Plant Science, 2019, 279, 108-116.	3.6	52
94	Arabidopsisecotypes and mutants that are recalcitrant toAgrobacteriumroot transformation are susceptible to germ-line transformation. Plant Journal, 2000, 21, 9-16.	5.7	51
95	Arabidopsis Heterotrimeric G-Proteins Play a Critical Role in Host and Nonhost Resistance against Pseudomonas syringae Pathogens. PLoS ONE, 2013, 8, e82445.	2.5	50
96	The Small GTPase ROP10 of <i>Medicago truncatula</i> Is Required for Both Tip Growth of Root Hairs and Nod Factor-Induced Root Hair Deformation. Plant Cell, 2015, 27, 806-822.	6.6	50
97	The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. Molecular Plant-Microbe Interactions, 2017, 30, 829-841.	2.6	50
98	Agrobacterium-Mediated Transformation of Tomato with rolB Gene Results in Enhancement of Fruit Quality and Foliar Resistance against Fungal Pathogens. PLoS ONE, 2014, 9, e96979.	2.5	49
99	Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in <i>Medicago truncatula</i> . Plant, Cell and Environment, 2016, 39, 2198-2209.	5.7	49
100	The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. Plant Physiology, 2016, 171, pp.00230.2016.	4.8	48
101	Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in <i>Arabidopsis thaliana</i> . RNA Biology, 2014, 11, 1414-1429.	3.1	46
102	Aldoâ€keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants. Plant Biotechnology Journal, 2017, 15, 794-804.	8.3	46
103	MiR393 and miR390 synergistically regulate lateral root growth in rice under different conditions. BMC Plant Biology, 2018, 18, 261.	3.6	46
104	NTRC and Chloroplast-Generated Reactive Oxygen Species Regulate <i>Pseudomonas syringae</i> pv. <i>tomato</i> Disease Development in Tomato and <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 294-306.	2.6	45
105	Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant, Cell and Environment, 2017, 40, 702-716.	5.7	45
106	Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance. Journal of Plant Physiology, 2008, 165, 1404-1421.	3.5	44
107	SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant–pathogen interactions. Molecular Plant Pathology, 2010, 11, 597-611.	4.2	44
108	Functional specialization of duplicated AP3â€like genes in <i>Medicago truncatula</i> . Plant Journal, 2013, 73, 663-675.	5.7	43

#	Article	IF	CITATIONS
109	<i>Agrobacterium</i> Tâ€ <scp>DNA</scp> integration into the plant genome can occur without the activity of key nonâ€homologous endâ€joining proteins. Plant Journal, 2015, 81, 934-946.	5.7	43
110	Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust. Scientific Reports, 2015, 5, 13061.	3.3	41
111	Characterization of the Rust Fungus, Puccinia emaculata, and Evaluation of Genetic Variability for Rust Resistance in Switchgrass Populations. Bioenergy Research, 2013, 6, 458-468.	3.9	40
112	<i><i>AtCYP710A1</i></i> gene-mediated stigmasterol production plays a role in imparting temperature stress tolerance in <i><i>Arabidopsis thaliana</i></i> . Plant Signaling and Behavior, 2013, 8, e23142.	2.4	40
113	Retroelement insertions at the <scp>M</scp> edicago <i>FTa1</i> locus in <i>spring</i> mutants eliminate vernalisation but not longâ€day requirements for early flowering. Plant Journal, 2013, 76, 580-591.	5.7	40
114	Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. Journal of Experimental Botany, 2015, 66, 1237-1244.	4.8	40
115	Role of the Nod Factor Hydrolase MtNFH1 in Regulating Nod Factor Levels during Rhizobial Infection and in Mature Nodules of <i>Medicago truncatula</i> . Plant Cell, 2018, 30, 397-414.	6.6	40
116	<i>MtNODULE ROOT1</i> and <i>MtNODULE ROOT2</i> Are Essential for Indeterminate Nodule Identity. Plant Physiology, 2018, 178, 295-316.	4.8	40
117	A molecular framework underlying the compound leaf pattern of Medicago truncatula. Nature Plants, 2020, 6, 511-521.	9.3	40
118	Functional characterization of three water deficit stress-induced genes in tobacco and Arabidopsis: An approach based on gene down regulation. Plant Physiology and Biochemistry, 2010, 48, 35-44.	5.8	39
119	Glycolate oxidase is an alternative source for H ₂ O ₂ production during plant defense responses and functions independently from NADPH oxidase. Plant Signaling and Behavior, 2012, 7, 752-755.	2.4	38
120	Evolution by gene duplication of <i>Medicago truncatula PISTILLATA</i> -like transcription factors. Journal of Experimental Botany, 2016, 67, 1805-1817.	4.8	38
121	<i>Sinorhizobium meliloti</i> succinylated highâ€molecularâ€weight succinoglycan and the <i>Medicago truncatula</i> LysM receptorâ€like kinase MtLYK10 participate independently in symbiotic infection. Plant Journal, 2020, 102, 311-326.	5.7	37
122	Two euAGAMOUS Genes Control C-Function in Medicago truncatula. PLoS ONE, 2014, 9, e103770.	2.5	36
123	The CLE53–SUNN genetic pathway negatively regulates arbuscular mycorrhiza root colonization in Medicago truncatula. Journal of Experimental Botany, 2020, 71, 4972-4984.	4.8	36
124	Agrobacterium tumefaciens Transformation of the Radiation Hypersensitive Arabidopsis thaliana Mutants uvh1 and rad5. Molecular Plant-Microbe Interactions, 1998, 11, 1136-1141.	2.6	34
125	A Virus-Induced Gene Silencing Screen Identifies a Role for Thylakoid Formation1 in Pseudomonas syringae pv tomato Symptom Development in Tomato and Arabidopsis. Plant Physiology, 2009, 152, 281-292.	4.8	34
126	Forward Genetics Screening of Medicago truncatula Tnt1 Insertion Lines. Methods in Molecular Biology, 2013, 1069, 93-100.	0.9	34

#	Article	IF	CITATIONS
127	<i><scp>LOOSE FLOWER</scp></i> , a <i><scp>WUSCHEL</scp></i> â€like Homeobox gene, is required for lateral fusion of floral organs in <i>Medicago truncatula</i> . Plant Journal, 2015, 81, 480-492.	5.7	34
128	Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Scientific Reports, 2017, 7, 9327.	3.3	34
129	IPD3 and IPD3L Function Redundantly in Rhizobial and Mycorrhizal Symbioses. Frontiers in Plant Science, 2018, 9, 267.	3.6	34
130	Apoplastic Extracts from a Transgenic Wheat Line Exhibiting Lesion-Mimic Phenotype Have Multiple Pathogenesis-Related Proteins That Are Antifungal. Molecular Plant-Microbe Interactions, 2004, 17, 1306-1317.	2.6	33
131	Nuclear DNA content in species ofEleusine (Gramineae): A critical re-evaluation using laser flow cytometry. Plant Systematics and Evolution, 1997, 207, 1-11.	0.9	32
132	Pseudomonas Type III Effector AvrPto Suppresses the Programmed Cell Death Induced by Two Nonhost Pathogens in Nicotiana benthamiana and Tomato. Molecular Plant-Microbe Interactions, 2004, 17, 1328-1336.	2.6	32
133	<i>SGT1</i> contributes to coronatine signaling and <i>Pseudomonas syringae</i> pv. <i>tomato</i> disease symptom development in tomato and Arabidopsis. New Phytologist, 2011, 189, 83-93.	7.3	32
134	Several components of SKP1/Cullin/Fâ€box E3 ubiquitin ligase complex and associated factors play a role in <i>Agrobacterium</i> â€mediated plant transformation. New Phytologist, 2012, 195, 203-216.	7.3	32
135	Opposing control by transcription factors MYB61 and MYB3 Increases Freezing Tolerance by relieving C-repeat Binding Factor suppression. Plant Physiology, 2016, 172, pp.00051.2016.	4.8	32
136	A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago. Journal of Experimental Botany, 2018, 69, 4867-4880.	4.8	32
137	SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 Regulating OsmiR396 Are Involved in Stem Elongation. Plant Physiology, 2020, 182, 2213-2227.	4.8	32
138	Agrobacterium expressing aÂtype III secretion system delivers Pseudomonas effectors into plant cells to enhance transformation. Nature Communications, 2022, 13, 2581.	12.8	32
139	A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biology, 2013, 13, 193.	3.6	31
140	DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. Plant Journal, 2015, 81, 453-466.	5.7	31
141	<i>Mt<scp>VRN</scp>2</i> is a Polycomb <i><scp>VRN</scp>2</i> â€ <i>like</i> gene which represses the transition to flowering in the model legume <i>Medicago truncatula</i> . Plant Journal, 2016, 86, 145-160.	5.7	31
142	Transcriptomeâ€based analyses of phosphiteâ€mediated suppression of rust pathogens <i>Puccinia emaculata</i> and <i>Phakopsora pachyrhizi</i> and functional characterization of selected fungal target genes. Plant Journal, 2018, 93, 894-904.	5.7	31
143	HEADLESS, aWUSCHELhomolog, uncovers novel aspects of shoot meristem regulation and leaf blade development inMedicago truncatula. Journal of Experimental Botany, 2019, 70, 149-163.	4.8	31
144	Phymatotrichum (cotton) root rot caused by <i>Phymatotrichopsis omnivora</i> : retrospects and prospects. Molecular Plant Pathology, 2010, 11, 325-334.	4.2	30

#	Article	IF	CITATIONS
145	<i>Agrobacterium</i> May Delay Plant Nonhomologous End-Joining DNA Repair via XRCC4 to Favor T-DNA Integration. Plant Cell, 2012, 24, 4110-4123.	6.6	30
146	Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering. Frontiers in Plant Science, 2018, 9, 496.	3.6	30
147	The future of legume genetic data resources: Challenges, opportunities, and priorities. , 2019, 1, e16.		30
148	Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. BMC Plant Biology, 2013, 13, 65.	3.6	28
149	Assessing functional role of three water deficit stress-induced genes in nonhost disease resistance using virus-induced gene silencing in <i>Nicotiana benthamiana</i> . Plant Signaling and Behavior, 2010, 5, 586-590.	2.4	27
150	Metabolic flux towards the (iso)flavonoid pathway in lignin modified alfalfa lines induces resistance against <i>Fusarium oxysporum</i> f. sp. <i>medicaginis</i> . Plant, Cell and Environment, 2018, 41, 1997-2007.	5.7	27
151	The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. Scientific Reports, 2017, 7, 9260.	3.3	27
152	Genomics of Plant Disease Resistance in Legumes. Frontiers in Plant Science, 2019, 10, 1345.	3.6	27
153	NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against <i>Pseudomonas syringae</i> pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ, 2016, 4, e1938.	2.0	27
154	Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing. BMC Genomics, 2016, 17, 141.	2.8	26
155	The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in <i>Medicago truncatula</i> . Journal of Integrative Plant Biology, 2020, 62, 1880-1895.	8.5	26
156	Characterization of Brachypodium distachyon as a nonhost model against switchgrass rust pathogen Puccinia emaculata. BMC Plant Biology, 2015, 15, 113.	3.6	25
157	An efficient and improved method for virus-induced gene silencing in sorghum. BMC Plant Biology, 2018, 18, 123.	3.6	25
158	Genomeâ€wide analysis of flanking sequences reveals thatÂ <i>Tnt1</i> insertion is positively correlated with gene methylation in <i>Medicago truncatula</i> . Plant Journal, 2019, 98, 1106-1119.	5.7	25
159	Mutations in Arabidopsis Fatty Acid Amide Hydrolase Reveal That Catalytic Activity Influences Growth but Not Sensitivity to Abscisic Acid or Pathogens. Journal of Biological Chemistry, 2009, 284, 34065-34074.	3.4	24
160	Aboveground insect infestation attenuates belowground <i>Agrobacteriumâ€</i> mediated genetic transformation. New Phytologist, 2015, 207, 148-158.	7.3	24
161	The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Plant Molecular Biology, 2021, 105, 193-204.	3.9	24
162	Control of Vegetative to Reproductive Phase Transition Improves Biomass Yield and Simultaneously Reduces Lignin Content in Medicago truncatula. Bioenergy Research, 2015, 8, 857-867.	3.9	23

#	Article	IF	CITATIONS
163	Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance. Molecular Plant Pathology, 2020, 21, 1481-1494.	4.2	23
164	<i>Medicago truncatula</i> Ferroportin2 mediates iron import into nodule symbiosomes. New Phytologist, 2020, 228, 194-209.	7.3	23
165	Two Chloroplast-Localized Proteins: AtNHR2A and AtNHR2B, Contribute to Callose Deposition During Nonhost Disease Resistance in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2018, 31, 1280-1290.	2.6	22
166	<i>Lateral Leaflet Suppression 1 </i> (<i>LLS1</i>), encoding the MtYUCCA1 protein, regulates lateral leaflet development in <i>Medicago truncatula</i> . New Phytologist, 2020, 227, 613-628.	7.3	21
167	Control of dicot leaf blade expansion by aWOXgene,STF. Plant Signaling and Behavior, 2011, 6, 1861-1864.	2.4	20
168	Transcriptome Profiling of Rust Resistance in Switchgrass Using RNAâ€Seq Analysis. Plant Genome, 2015, 8, eplantgenome2014.10.0075.	2.8	20
169	<i>AGLF</i> provides C-function in floral organ identity through transcriptional regulation of <i>AGAMOUS</i> in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5176-5181.	7.1	20
170	Nucleolar GTP-Binding Protein 1-2 (NOG1-2) Interacts with Jasmonate-ZIMDomain Protein 9 (JAZ9) to Regulate Stomatal Aperture during Plant Immunity. International Journal of Molecular Sciences, 2018, 19, 1922.	4.1	19
171	Expression analysis reveals a role for hydrophobic or epicuticular wax signals in pre-penetration structure formation of <i>Phakopsora pachyrhizi</i> . Plant Signaling and Behavior, 2013, 8, e26959.	2.4	18
172	Impact of Concurrent Drought Stress and Pathogen Infection on Plants. , 2015, , 203-222.		18
173	Functional Specialization of Duplicated AGAMOUS Homologs in Regulating Floral Organ Development of Medicago truncatula. Frontiers in Plant Science, 2018, 9, 854.	3.6	18
174	The antagonistic MYB paralogs <i>RH1</i> and <i>RH2</i> govern anthocyanin leaf markings in <i>Medicago truncatula</i> . New Phytologist, 2021, 229, 3330-3344.	7.3	18
175	Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula. Frontiers in Plant Science, 2021, 12, 659061.	3.6	18
176	Transformation of leguminous plants to study symbiotic interactions. International Journal of Developmental Biology, 2013, 57, 577-586.	0.6	17
177	Flexible functional interactions between Gâ€protein subunits contribute to the specificity of plant responses. Plant Journal, 2020, 102, 207-221.	5.7	17
178	MtSUPERMAN plays a key role in compound inflorescence and flower development in Medicago truncatula. Plant Journal, 2021, 105, 816-830.	5.7	17
179	Genome-wide identification and characterization of cytokinin oxidase/dehydrogenase family genes in Medicago truncatula. Journal of Plant Physiology, 2021, 256, 153308.	3.5	16
180	Molecular Characterization of the Tubulin-Related Gene Families in Herbicide Resistant and Susceptible Goosegrass (<i>Eleusine indica</i>). Weed Science, 1995, 43, 28-33.	1.5	15

#	Article	IF	CITATIONS
181	Virusâ€induced gene silencing database for phenomics and functional genomics in <i>Nicotiana benthamiana</i> . Plant Direct, 2018, 2, e00055.	1.9	15
182	Overexpression of Medicago MtCDFd1_1 Causes Delayed Flowering in Medicago via Repression of MtFTa1 but Not MtCO-Like Genes. Frontiers in Plant Science, 2019, 10, 1148.	3.6	15
183	Medicago PHYA promotes flowering, primary stem elongation and expression of flowering time genes in long days. BMC Plant Biology, 2020, 20, 329.	3.6	15
184	Antagonistic Regulation by CPN60A and CLPC1 of TRXL1 that Regulates MDH Activity Leading to Plant Disease Resistance and Thermotolerance. Cell Reports, 2020, 33, 108512.	6.4	15
185	Advances in Plant Gene Silencing Methods. Methods in Molecular Biology, 2015, 1287, 3-23.	0.9	15
186	VIGS-Mediated Forward Genetics Screening for Identification of Genes Involved in Nonhost Resistance. Journal of Visualized Experiments, 2013, , e51033.	0.3	14
187	MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots. EMBO Journal, 2021, 40, e106847.	7.8	14
188	Pseudomonas syringae Flood-inoculation Method in Arabidopsis. Bio-protocol, 2017, 7, e2106.	0.4	14
189	Iron–Sulfur Cluster Protein NITROGEN FIXATION S-LIKE1 and Its Interactor FRATAXIN Function in Plant Immunity. Plant Physiology, 2020, 184, 1532-1548.	4.8	13
190	Carbonyl Cytotoxicity Affects Plant Cellular Processes and Detoxifying Enzymes Scavenge These Compounds to Improve Stress Tolerance. Journal of Agricultural and Food Chemistry, 2020, 68, 6237-6247.	5.2	13
191	Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula Nodules. Frontiers in Plant Science, 2019, 10, 1780.	3.6	13
192	Delineating the Tnt1 Insertion Landscape of the Model Legume Medicago truncatula cv. R108 at the Hi-C Resolution Using a Chromosome-Length Genome Assembly. International Journal of Molecular Sciences, 2021, 22, 4326.	4.1	13
193	LATE MERISTEM IDENTITY1 regulates leaf margin development via the auxin transporter gene <i>SMOOTH LEAF MARGIN1</i> . Plant Physiology, 2021, 187, 218-235.	4.8	13
194	Tnt1retrotransposon tagging ofSTFinMedicago truncatulareveals tight coordination of metabolic, hormonal and developmental signals during leaf morphogenesis. Mobile Genetic Elements, 2011, 1, 301-329.	1.8	12
195	Enabling Reverse Genetics in Medicago truncatula Using High-Throughput Sequencing for Tnt1 Flanking Sequence Recovery. Methods in Molecular Biology, 2017, 1610, 25-37.	0.9	12
196	<i>Medicago truncatula</i> : Genetic and Genomic Resources. Current Protocols in Plant Biology, 2017, 2, 318-349.	2.8	12
197	Salmonella entericaserovar Typhimurium ATCC 14028S is tolerant to plant defenses triggered by the flagellin receptor FLS2. FEMS Microbiology Letters, 2019, 366, .	1.8	10
198	A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. Plant and Cell Physiology, 2019, 60, 575-586.	3.1	10

#	Article	IF	CITATIONS
199	The <i>Medicago truncatula Yellow Stripe1-Like3</i> gene is involved in vascular delivery of transition metals to root nodules. Journal of Experimental Botany, 2020, 71, 7257-7269.	4.8	10
200	Spatiotemporal cytokinin response imaging and ISOPENTENYLTRANSFERASE 3 function in Medicago nodule development. Plant Physiology, 2022, 188, 560-575.	4.8	10
201	Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice. Plant Physiology, 2022, 189, 988-1004.	4.8	10
202	Transgenic Arabidopsis plants expressing Agrobacterium tumefaciens VirD2 protein are less susceptible to Agrobacterium transformation. Molecular Plant Pathology, 2006, 7, 473-484.	4.2	9
203	Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. BMC Genomics, 2016, 17, 1040.	2.8	9
204	Tnt1 Insertional Mutagenesis in Medicago truncatula. Methods in Molecular Biology, 2018, 1822, 107-114.	0.9	9
205	AGAMOUS AND TERMINAL FLOWER controls floral organ identity and inflorescence development in <i>Medicago truncatula</i> . Journal of Integrative Plant Biology, 2019, 61, 917-923.	8.5	9
206	A Novel Role of Salt- and Drought-Induced RING 1 Protein in Modulating Plant Defense Against Hemibiotrophic and Necrotrophic Pathogens. Molecular Plant-Microbe Interactions, 2021, 34, 297-308.	2.6	9
207	Measurement of NADPH Oxidase Activity in Plants. Bio-protocol, 2012, 2, .	0.4	9
208	Different oxidative burst patterns occur during host and nonhost resistance responses triggered by Xanthomonas campestris in pepper. Journal of Plant Biotechnology, 2009, 36, 244-254.	0.4	9
209	Plant circadian clock control of <i>Medicago truncatula</i> nodulation via regulation of nodule cysteine-rich peptides. Journal of Experimental Botany, 2022, 73, 2142-2156.	4.8	9
210	<scp><i>KIN3</i></scp> impacts arbuscular mycorrhizal symbiosis and promotes fungal colonisation in <i>Medicago truncatula</i> . Plant Journal, 2022, 110, 513-528.	5.7	9
211	Electroelution of Intact Proteins from SDS-PAGE Gels and Their Subsequent MALDI-TOF MS Analysis. , 2007, 355, 353-364.		8
212	Agroinoculation: A Simple Procedure for Systemic Infection of Plants with Viruses. Methods in Molecular Biology, 2008, 451, 555-562.	0.9	8
213	A role for chloroplast-localized <i>Thylakoid formation 1</i> (<i>THF1</i>) in bacterial speck disease development. Plant Signaling and Behavior, 2010, 5, 425-427.	2.4	8
214	The Candidate Photoperiod Gene MtFE Promotes Growth and Flowering in Medicago truncatula. Frontiers in Plant Science, 2021, 12, 634091.	3.6	8
215	Brassinosteroid homeostasis is critical for the functionality of the <i>Medicago truncatula</i> pulvinus. Plant Physiology, 2021, 185, 1745-1763.	4.8	8
216	Effect of Acyl Activating Enzyme (AAE) 3 on the growth and development of Medicago truncatula. Biochemical and Biophysical Research Communications, 2018, 505, 255-260.	2.1	7

#	Article	IF	CITATIONS
217	Role of cytosolic, tyrosineâ€insensitive prephenate dehydrogenase in <i>MedicagoÂtruncatula</i> . Plant Direct, 2020, 4, e00218.	1.9	7
218	<i><scp>Medicago truncatula</scp> Yellow <scp>Stripe‣ike7</scp></i> encodes a peptide transporter participating in symbiotic nitrogen fixation. Plant, Cell and Environment, 2021, 44, 1908-1920.	5.7	7
219	Statistical Inference of Selection and Divergence of the Rice Blast Resistance Gene <i>Pi-ta</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2425-2432.	1.8	6
220	Draft Genome Sequence Resource of Switchgrass Rust Pathogen, <i>Puccinia novopanici</i> Isolate Ard-01. Phytopathology, 2019, 109, 1513-1515.	2.2	6
221	Insertional mutagenesis of <i>Brachypodium distachyon</i> using the <i>Tnt1</i> retrotransposable element. Plant Journal, 2020, 103, 1924-1936.	5.7	6
222	A <i>Medicago truncatula rdr6</i> allele impairs transgene silencing and endogenous phased si <scp>RNA</scp> production but not development. Plant Biotechnology Journal, 2014, 12, 1308-1318.	8.3	5
223	MtFULc controls inflorescence development by directly repressing MtTFL1 in Medicago truncatula. Journal of Plant Physiology, 2021, 256, 153329.	3.5	5
224	The Arabidopsis Iron-Sulfur (Fe-S) Cluster Gene MFDX1 Plays a Role in Host and Nonhost Disease Resistance by Accumulation of Defense-Related Metabolites. International Journal of Molecular Sciences, 2021, 22, 7147.	4.1	5
225	The Pattern Recognition Receptor FLS2 Can Shape the Arabidopsis Rhizosphere Microbiome β-Diversity but Not EFR1 and CERK1. Plants, 2022, 11, 1323.	3.5	5
226	Functional role of formate dehydrogenase 1 (FDH1) for host and nonhost disease resistance against bacterial pathogens. PLoS ONE, 2022, 17, e0264917.	2.5	5
227	Involvement of SGT1 in COR-mediated signal transduction pathway leading to disease symptom development. Plant Signaling and Behavior, 2011, 6, 1072-1073.	2.4	4
228	The role of RAR1 inAgrobacterium-mediated plant transformation. Plant Signaling and Behavior, 2013, 8, e26784.	2.4	4
229	Overexpression of VIRE2-INTERACTING PROTEIN2 in Arabidopsis regulates genes involved in Agrobacterium-mediated plant transformation and abiotic stresses. Scientific Reports, 2019, 9, 13503.	3.3	4
230	A Dihydroflavonol-4-Reductase-Like Protein Interacts with NFR5 and Regulates Rhizobial Infection in <i>Lotus japonicus</i> . Molecular Plant-Microbe Interactions, 2019, 32, 401-412.	2.6	4
231	Plasticity of Phymatotrichopsis omnivora infection strategies is dependent on host and nonhost plant responses. Plant, Cell and Environment, 2020, 43, 1084-1101.	5.7	4
232	Protocol for determining protein cysteine thiol redox status using western blot analysis. STAR Protocols, 2021, 2, 100566.	1.2	4
233	Analysis of Differentially Expressed Rice Genes Reveals the ATP-Binding Cassette Transporters as Candidate Genes Against the Sheath Blight Pathogen, <i>Rhizoctonia solani</i> . PhytoFrontiers, 2022, 2, 105-115.	1.6	4
234	A legume-specific novel type of phytosulfokine, PSK-Î′, promotes nodulation by enhancing nodule organogenesis. Journal of Experimental Botany, 2022, 73, 2698-2713.	4.8	4

#	Article	IF	CITATIONS
235	Recent Advances in Plant Gene Silencing Methods. Methods in Molecular Biology, 2022, 2408, 1-22.	0.9	4
236	MtPIN1 and MtPIN3 Play Dual Roles in Regulation of Shade Avoidance Response under Different Environments in Medicago truncatula. International Journal of Molecular Sciences, 2020, 21, 8742.	4.1	3
237	The first genomic resources for Phymatotrichopsis omnivora, a soil-borne pezizomycete pathogen with a broad host range. Phytopathology, 2021, , PHYTO01210014A.	2.2	3
238	Functional Characterization of Water-Deficit Stress Responsive Genes Using RNAi. Methods in Molecular Biology, 2010, 639, 193-206.	0.9	3
239	Medicago truncatula resources to study legume biology and symbiotic nitrogen fixation. Fundamental Research, 2023, 3, 219-224.	3.3	3
240	Tissue Culture (Somatic Embryogenesis)-Induced Tnt1 Retrotransposon-Based Mutagenesis in Brachypodium distachyon. Methods in Molecular Biology, 2018, 1667, 57-63.	0.9	2
241	Exploring natural variation for rice sheath blight resistance in Brachypodium distachyon. Plant Signaling and Behavior, 2019, 14, 1546527.	2.4	2
242	Glycolate Oxidase Activity Assay in Plants. Bio-protocol, 2012, 2, .	0.4	2
243	Whole Genome Sequencing Identifies a Medicago truncatula Tnt1 Insertion Mutant in the VTL8 Gene that is Essential for Symbiotic Nitrogen Fixation. Compendium of Plant Genomes, 2022, , 103-112.	0.5	2
244	MtFDa is essential for flowering control and inflorescence development in Medicago truncatula. Journal of Plant Physiology, 2021, 260, 153412.	3.5	1
245	Dark Respiration Measurement from Arabidopsis Shoots. Bio-protocol, 2021, 11, e4181.	0.4	1
246	Agrobacterium biology and crown gall disease. , 2007, , 359-384.		1
247	Proteasomal Degradation of JAZ9 by Salt- and Drought-Induced Ring Finger 1 During Pathogen Infection. Molecular Plant-Microbe Interactions, 2021, 34, 1358-1364.	2.6	1
248	Virus-Induced Gene Silencing in Sorghum Using Brome Mosaic Virus. Methods in Molecular Biology, 2022, 2408, 109-115.	0.9	1
249	RNAi and microRNA Technologies to Combat Plant Insect Pests. , 2018, , 150-177.		0
250	The ATPase Activity of Escherichia coli Expressed AAA+-ATPase Protein. Bio-protocol, 2020, 10, e3705.	0.4	0
251	High-Throughput Analysis of Gene Function under Multiple Abiotic Stresses Using Leaf Disks from Silenced Plants. Methods in Molecular Biology, 2022, 2408, 181-189.	0.9	0

Agrobacterium biology and crown gall disease. , 2007, , 359-384.