
Michael R Combi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure. Science, 2006, 311, 1419-1422.	12.6	590
2	67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science, 2015, 347, 1261952.	12.6	403
3	Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2016, 2, e1600285.	10.3	393
4	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
5	Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astronomy and Astrophysics, 2015, 583, A1.	5.1	265
6	Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature, 2015, 526, 678-681.	27.8	260
7	Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0276.	12.6	222
8	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
9	The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 2015, 525, 500-503.	27.8	199
10	Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science, 2015, 348, 232-235.	12.6	195
11	Virtis: An Imaging Spectrometer for the Rosetta Mission. Space Science Reviews, 2007, 128, 529-559.	8.1	181
12	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
13	Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth's atmosphere. Science, 2017, 356, 1069-1072.	12.6	161
14	Modeling of Cometary X-rays Caused by Solar Wind Minor Ions. Science, 1997, 276, 939-942.	12.6	127
15	Evidence for Interacting Gas Flows and an Extended Volatile Source Distribution in the Coma of Comet C/1996 B2 (Hyakutake). Science, 1997, 277, 676-681.	12.6	121
16	A Global Kinetic Model for Cometary Comae: The Evolution of the Coma of the <i>Rosetta</i> Target Comet Churyumovâ€Gerasimenko throughout the Mission. Astrophysical Journal, 2008, 685, 659-677.	4.5	112
17	Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 489, 594-607.	4.4	112
18	The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS. Science, 2011, 334, 492-494.	12.6	110

#	Article	IF	CITATIONS
19	Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3815-3836.	2.4	106
20	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
21	Exospheres and Atmospheric Escape. Space Science Reviews, 2008, 139, 355-397.	8.1	103
22	Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN. Space Science Reviews, 2015, 195, 357-422.	8.1	99
23	<i>EPOXI</i> : COMET 103P/HARTLEY 2 OBSERVATIONS FROM A WORLDWIDE CAMPAIGN. Astrophysical Journal Letters, 2011, 734, L1.	8.3	96
24	The Plasma Environment of Comet 67P/Churyumov-Gerasimenko Throughout the Rosetta Main Mission. Space Science Reviews, 2007, 128, 133-166.	8.1	95
25	Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A7.	5.1	93
26	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
27	Neutral cometary atmospheres. I - an average random walk model for photodissociation in comets. Astrophysical Journal, 1980, 237, 633.	4.5	90
28	Time-Dependent Gas Kinetics in Tenuous Planetary Atmospheres: The Cometary Coma. Icarus, 1996, 123, 207-226.	2.5	88
29	Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy and Astrophysics, 2016, 588, A134.	5.1	88
30	HST and VLT Investigations of the Fragments of Comet C/1999 S4 (LINEAR). Science, 2001, 292, 1329-1333.	12.6	87
31	Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2015, 1, e1500377.	10.3	87
32	Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S156-S169.	4.4	87
33	Neutral Upper Atmosphere and Ionosphere Modeling. Space Science Reviews, 2008, 139, 107-141.	8.1	85
34	Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae. Nature Astronomy, 2020, 4, 533-540.	10.1	79
35	A Search for Argon and O [CSC]vi[/CSC] in Three Comets Using the [ITAL]Far Ultraviolet Spectroscopic Explorer[/ITAL]. Astrophysical Journal, 2002, 576, L95-L98.	4.5	78
36	First observations of H ₂ O and CO ₂ vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A6.	5.1	77

#	Article	IF	CITATIONS
37	Virtis : an imaging spectrometer for the rosetta mission. Planetary and Space Science, 1998, 46, 1291-1304.	1.7	72
38	Evolution of CO ₂ , CH ₄ , and OCS abundances relative to H ₂ O in the coma of comet 67P around perihelion from <i>Rosetta</i> /VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S170-S183.	4.4	72
39	Monte Carlo particle-trajectory models for neutral cometary gases. I - Models and equations. II - The spatial morphology of the Lyman-alpha coma. Astrophysical Journal, 1988, 327, 1026.	4.5	71
40	A general model for Io's neutral gas clouds. II - Application to the sodium cloud. Astrophysical Journal, 1988, 328, 888.	4.5	71
41	A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus, 2010, 206, 18-27.	2.5	67
42	NUMERICAL SIMULATION OF DUST IN A COMETARY COMA: APPLICATION TO COMET 67P/CHURYUMOV-GERASIMENKO. Astrophysical Journal, 2011, 732, 104.	4.5	67
43	lo's plasma environment during the Galileo flyby: Global three-dimensional MHD modeling with adaptive mesh refinement. Journal of Geophysical Research, 1998, 103, 9071-9081.	3.3	65
44	Spectroscopic Investigations of Fragment Species in the Coma. , 2004, , 425-448.		63
45	The interaction between the magnetosphere of Saturn and Titan's ionosphere. Journal of Geophysical Research, 2001, 106, 6151-6160.	3.3	62
46	Water and carbon dioxide distribution in the 67P/Churyumov-Gerasimenko coma from VIRTIS-M infrared observations. Astronomy and Astrophysics, 2016, 589, A45.	5.1	62
47	Largeâ€Aperture [Oi] 6300 A Photometry of Comet Haleâ€Bopp: Implications for the Photochemistry of OH. Astrophysical Journal, 2001, 563, 451-461.	4.5	61
48	Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P. Icarus, 2016, 277, 78-97.	2.5	61
49	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
50	Threeâ€dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. Journal of Geophysical Research, 2009, 114, .	3.3	60
51	The Main Belt Comets and ice in the Solar System. Astronomy and Astrophysics Review, 2017, 25, 1.	25.5	60
52	Dust-Gas Interrelations In Comets: Observations And Theory. Earth, Moon and Planets, 1997, 79, 275-306.	0.6	57
53	The Spatial Distribution of Gaseous Atomic Sodium in the Comae of Comets: Evidence for Direct Nucleus and Extended Plasma Sources. Icarus, 1997, 130, 336-354.	2.5	57
54	The surface distributions of the production of the major volatile species, H2O, CO2, CO and O2, from the nucleus of comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as measured by the ROSINA double focusing mass spectrometer. Icarus, 2020, 335, 113421.	2.5	57

#	ARTICLE	IF	CITATIONS
55	Threeâ€dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. Journal of Geophysical Research, 2009, 114, .	3.3	56
56	Plasma environment of a weak comet – Predictions for Comet 67P/Churyumov–Gerasimenko from multifluid-MHD and Hybrid models. Icarus, 2014, 242, 38-49.	2.5	56
57	SOHO/SWAN Observations of the Structure and Evolution of the Hydrogen Lyman-α Coma of Comet Hale–Bopp (1995 O1). Icarus, 2000, 144, 191-202.	2.5	55
58	Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study. Monthly Notices of the Royal Astronomical Society, 0, , stw2413.	4.4	54
59	Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Science Advances, 2018, 4, eaar6297.	10.3	52
60	Encounter of the <i>Ulysses</i> Spacecraft with the Ion Tail of Comet McNaught. Astrophysical Journal, 2007, 667, 1262-1266.	4.5	51
61	Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research: Space Physics, 2015, 120, 7857-7872.	2.4	51
62	A Critical Study of Molecular Photodissociation and CHON Grain Sources for Cometary C2. Astrophysical Journal, 1997, 484, 879-890.	4.5	50
63	Water Production of Comet C/1999 S4 (LINEAR) Observed with the SWAN Instrument. Science, 2001, 292, 1326-1329.	12.6	49
64	The outflow speed of the coma of Halley's comet. Icarus, 1989, 81, 41-50.	2.5	48
65	Modeling the heterogeneous ice and gas coma of Comet 103P/Hartley 2. Icarus, 2013, 225, 688-702.	2.5	48
66	Gas Dynamics and Kinetics in the Cometary Coma:. , 2004, , 523-552.		48
67	NARROW DUST JETS IN A DIFFUSE GAS COMA: A NATURAL PRODUCT OF SMALL ACTIVE REGIONS ON COMETS. Astrophysical Journal, 2012, 749, 29.	4.5	45
68	ChandraObservations of Comet 2P/Encke 2003: First Detection of a Collisionally Thin, Fast Solar Wind Charge Exchange System. Astrophysical Journal, 2005, 635, 1329-1347.	4.5	44
69	Selfâ€consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 3503-3524.	2.4	44
70	Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1336-1345.	4.4	44
71	Monte Carlo Particle Trajectory Models for Neutral Cometary Gases. II. The Spatial Morphology of the Lyman-Alpha Coma. Astrophysical Journal, 1988, 327, 1044.	4.5	44
72	Ion composition and chemistry in the coma of Comet 1P/Halley—A comparison between Giotto's Ion Mass Spectrometer and our ion-chemical network. Icarus, 2009, 199, 505-519.	2.5	43

#	Article	IF	CITATIONS
73	ROSINA/DFMS and IES observations of 67P: Ion-neutral chemistry in the coma of a weakly outgassing comet. Astronomy and Astrophysics, 2015, 583, A2.	5.1	43
74	Sources of cometary radicals and their jets: Gases or grains. Icarus, 1987, 71, 178-191.	2.5	42
75	Understanding measured water rotational temperatures and column densities in the very innermost coma of Comet 73P/Schwassmann–Wachmann 3 B. Icarus, 2012, 221, 174-185.	2.5	42
76	Comet P/Halley - Spatial distributions and scale lengths for C2, CN, NH2, and H2O. Astrophysical Journal, 1991, 383, 356.	4.5	42
77	Monte Carlo modeling of neutral gas and dust in the coma of Comet 1P/Halley. Icarus, 2011, 213, 655-677.	2.5	41
78	A Coulomb collision algorithm for weighted particle simulations. Geophysical Research Letters, 1994, 21, 1735-1738.	4.0	40
79	Water loss and evolution of the upper atmosphere and exosphere over martian history. Icarus, 2010, 206, 28-39.	2.5	40
80	Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance. Journal of Geophysical Research: Space Physics, 2017, 122, 1102-1116.	2.4	40
81	WATER PRODUCTION BY COMET 103P/HARTLEY 2 OBSERVED WITH THE SWAN INSTRUMENT ON THE <i>SOHO</i> SPACECRAFT. Astrophysical Journal Letters, 2011, 734, L6.	8.3	39
82	UNUSUAL WATER PRODUCTION ACTIVITY OF COMET C/2012 S1 (ISON): OUTBURSTS AND CONTINUOUS FRAGMENTATION. Astrophysical Journal Letters, 2014, 788, L7.	8.3	39
83	Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere. Journal of Geophysical Research E: Planets, 2015, 120, 1880-1892.	3.6	38
84	Water production rate of Comet C/2009 P1 (Garradd) throughout the 2011–2012 apparition: Evidence for an icy grain halo. Icarus, 2013, 225, 740-748.	2.5	37
85	Quantitative Analysis of H2O+Coma Images Using a Multiscale MHD Model with Detailed Ion Chemistry. Icarus, 1997, 130, 373-386.	2.5	36
86	Fourâ€fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumovâ€Gerasimenko near perihelion. Journal of Geophysical Research: Space Physics, 2016, 121, 4247-4268.	2.4	36
87	lo's sodium directional features - Evidence for a magnetospheric-wind-driven gas escape mechanism. Astrophysical Journal, 1984, 287, 427.	4.5	36
88	A comparison of 3â€Ð model predictions of Mars' oxygen corona with early MAVEN IUVS observations. Geophysical Research Letters, 2015, 42, 9015-9022.	4.0	35
89	A survey of water production in 61 comets from SOHO/SWAN observations of hydrogen Lyman-alpha: Twenty-one years 1996–2016. Icarus, 2019, 317, 610-620.	2.5	34
90	The fragmentation of dust in the innermost comae of comets: Possible evidence from ground-based images. Astronomical Journal, 1994, 108, 304.	4.7	34

#	Article	IF	CITATIONS
91	Kinetic modeling of sodium in the lunar exosphere. Icarus, 2013, 226, 1538-1549.	2.5	32
92	O/1D/ and H2O/+/ in comet Bennett 1970. II. Astrophysical Journal, 1979, 228, 330.	4.5	32
93	HubbleSpaceTelescopeUltraviolet Imaging and Highâ€Resolution Spectroscopy of Water Photodissociation Products in Comet Hyakutake (C/1996 B2). Astrophysical Journal, 1998, 494, 816-821.	4.5	31
94	Observation and Analysis of Highâ€Resolution Optical Line Profiles in Comet Hyakutake (C/1996 B2). Astrophysical Journal, 1999, 512, 961-968.	4.5	31
95	An approach to numerical simulation of the gas distribution in the atmosphere of Enceladus. Journal of Geophysical Research, 2010, 115, .	3.3	31
96	Deep Impact at Comet Tempel 1. Icarus, 2007, 187, 1-3.	2.5	30
97	Plasma Flow and Related Phenomena inÂPlanetaryÂAeronomy. Space Science Reviews, 2008, 139, 311-353.	8.1	30
98	COMET 1P/HALLEY MULTIFLUID MHD MODEL FOR THE <i>GIOTTO</i> FLY-BY. Astrophysical Journal, 2014, 781, 86.	4.5	29
99	HIGH-TIME RESOLUTION IN SITU INVESTIGATION OF MAJOR COMETARY VOLATILES AROUND 67P/C–G AT 3.1–2.3 au MEASURED WITH ROSINA-RTOF. Astrophysical Journal, 2016, 819, 126.	4.5	29
100	The heterogeneous coma of comet 67P/Churyumov-Gerasimenko as seen by ROSINA: H ₂ 0, CO ₂ , and CO from September 2014 to February 2016. Astronomy and Astrophysics, 2017, 600, A77.	5.1	29
101	MHD Simulation of Comets: The Plasma Environment of Comet Hale-Bopp. Earth, Moon and Planets, 1997, 79, 179-207.	0.6	28
102	On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby. Journal of Geophysical Research, 1999, 104, 19983-19992.	3.3	28
103	Temporal deconvolution of the hydrogen coma. Icarus, 2005, 177, 228-245.	2.5	28
104	<i>SOHO</i> /SWAN OBSERVATIONS OF SHORT-PERIOD SPACECRAFT TARGET COMETS. Astronomical Journal, 2011, 141, 128.	4.7	28
105	Ion chemistry in the coma of comet 67P near perihelion. Monthly Notices of the Royal Astronomical Society, 2016, 462, S67-S77.	4.4	28
106	Io's Sodium Corona and Spatially Extended Cloud: A Consistent Flux Speed Distributionâ~†. Icarus, 1997, 126, 58-77.	2.5	27
107	The water production rate of Rosetta target Comet 67P/Churyumov–Gerasimenko near perihelion in 1996, 2002 and 2009 from Lyman α observations with SWAN/SOHO. Planetary and Space Science, 2014, 91, 14-19.	1.7	27
108	Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S695-S711.	4.4	27

#	Article	IF	CITATIONS
109	The sodium zenocorona. Journal of Geophysical Research, 1991, 96, 22711-22727.	3.3	26
110	Evidence for depletion of heavy silicon isotopes at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 601, A123.	5.1	26
111	Comet 41P/Tuttle–Giacobini–Kresak, 45P/Honda–Mrkos–Pajdusakova, and 46P/Wirtanen: Water Production Activity over 21 yr with SOHO/SWAN. Planetary Science Journal, 2020, 1, 72.	3.6	26
112	Temporal deconvolution of the hydrogen coma I. A hybrid model. Icarus, 2005, 177, 217-227.	2.5	24
113	Prestellar grain-surface origins of deuterated methanol in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4901-4920.	4.4	24
114	Effects of kinetic processes in shaping Io's global plasma environment: A 3D hybrid model. Icarus, 2006, 180, 412-427.	2.5	23
115	A global model of cometary tail disconnection events triggered by solar wind magnetic variations. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	23
116	Probing the Evolutionary History of Comets: An Investigation of the Hypervolatiles CO, CH ₄ , and C ₂ H ₆ in the Jupiter-family Comet 21P/Giacobini–Zinner. Astronomical Journal, 2020, 159, 42.	4.7	23
117	First Comet Observations with NIRSPEC-2 at Keck: Outgassing Sources of Parent Volatiles and Abundances Based on Alternative Taxonomic Compositional Baselines in 46P/Wirtanen. Planetary Science Journal, 2021, 2, 45.	3.6	22
118	lo's magnetospheric interaction: an MHD model with day-night asymmetry. Planetary and Space Science, 2001, 49, 337-344.	1.7	21
119	IMAGING OBSERVATIONS OF THE HYDROGEN COMA OF COMET 67P/CHURYUMOV–GERASIMENKO IN 2015 SEPTEMBER BY THE PROCYON/LAICA. Astronomical Journal, 2017, 153, 76.	4.7	21
120	Neutral cometary atmospheres. II - The production of CN in comets. Astrophysical Journal, 1980, 237, 641.	4.5	21
121	The OH distribution in cometary atmospheres - A collisional Monte Carlo model for heavy species. Astrophysical Journal, 1993, 408, 668.	4.5	21
122	A general model for Io's neutral gas clouds. I - Mathematical description. Astrophysical Journal, Supplement Series, 1988, 66, 397.	7.7	21
123	Pioneer Venus lymanâ€Î± observations of comet P/Giacobiniâ€Zinner and the life expectancy of cometary hydrogen. Geophysical Research Letters, 1986, 13, 385-388.	4.0	20
124	Large Aperture Oi6300 A Observations of Comet Hyakutake: Implications for the Photochemistry of OH and OiProduction in Comet Haleâ€Bopp. Astrophysical Journal, 2007, 657, 1162-1171.	4.5	20
125	WATER PRODUCTION IN COMETS 2001 Q4 (NEAT) AND 2002 T7 (LINEAR) DETERMINED FROM <i>SOHO</i> /SWAN OBSERVATIONS. Astronomical Journal, 2009, 137, 4734-4743.	4.7	20
126	Neutral cometary atmospheres. III - Acceleration of cometary CN by solar radiation pressure. Astrophysical Journal, 1980, 241, 830.	4.5	20

#	Article	IF	CITATIONS
127	Neutral cometary atmospheres. V - C2 and CN in comets. Astrophysical Journal, 1986, 308, 472.	4.5	20
128	STUDY OF THE 2007 APRIL 20 CME-COMET INTERACTION EVENT WITH AN MHD MODEL. Astrophysical Journal, 2009, 696, L56-L60.	4.5	19
129	Kelvinâ€Helmholtz instabilities at the magnetic cavity boundary of comet 67P/Churyumovâ€Gerasimenko. Journal of Geophysical Research, 2012, 117, .	3.3	19
130	Solar system Xâ€rays from charge exchange processes. Astronomische Nachrichten, 2012, 333, 324-334.	1.2	19
131	MASS TRANSPORT AROUND COMETS AND ITS IMPACT ON THE SEASONAL DIFFERENCES IN WATER PRODUCTION RATES. Astrophysical Journal, 2014, 788, 168.	4.5	19
132	Searches for HCl and HF in comets 103P/Hartley 2 and C/2009 P1 (Garradd) with the <i>Herschel</i> Space Observatory. Astronomy and Astrophysics, 2014, 562, A5.	5.1	19
133	Hot carbon corona in Mars' upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox. Journal of Geophysical Research E: Planets, 2014, 119, 905-924.	3.6	19
134	Effects of a Solar Flare on the Martian Hot O Corona and Photochemical Escape. Geophysical Research Letters, 2018, 45, 6814-6822.	4.0	19
135	Neutral cometary atmospheres. IV - Brightness profiles in the inner coma of comet Kohoutek 1973 XII. Astrophysical Journal, 1983, 271, 388.	4.5	19
136	Two-species, 3D, MHD simulation of Europa's interaction with Jupiter's magnetosphere. Geophysical Research Letters, 2000, 27, 1791-1794.	4.0	18
137	<title>VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission</title> ., 1996, , .		17
138	On the Effect of Electron Collisions in the Excitation of Cometary HCN. Astrophysical Journal, 2004, 613, 615-621.	4.5	17
139	Water production activity of nine long-period comets from SOHO/SWAN observations of hydrogen Lyman-alpha: 2013–2016. Icarus, 2018, 300, 33-46.	2.5	17
140	Application of the Monte Carlo Method in Modeling Dusty Gas, Dust in Plasma, and Energetic Ions in Planetary, Magnetospheric, and Heliospheric Environments. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028242.	2.4	17
141	Chandra observations of Comet 9P/Tempel 1 during the Deep Impact campaign. Icarus, 2007, 190, 391-405.	2.5	16
142	A 3-D global MHD model for the effect of neutral jets during the Deep Space 1 Comet 19P/Borrelly flyby. Icarus, 2008, 196, 249-257.	2.5	16
143	High D/H ratios in water and alkanes in comet 67P/Churyumov-Gerasimenko measured with Rosetta/ROSINA DFMS. Astronomy and Astrophysics, 2022, 662, A69.	5.1	16
144	Hale-Bopp: What Makes a Big Comet Different? Coma Dynamics: Observations and Theory. Earth, Moon and Planets, 2000, 89, 73-90.	0.6	15

#	Article	IF	CITATIONS
145	The outer source of pickup ions and anomalous cosmic rays. Geophysical Research Letters, 2002, 29, 54-1-54-4.	4.0	15
146	SOHO/SWAN observations of comets with small perihelia: C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), 2006 P1 (McNaught) and 96P/Machholz 1. Icarus, 2011, 216, 449-461.	2.5	15
147	ROSINA/DFMS capabilities to measure isotopic ratios in water at comet 67P/Churyumov–Gerasimenko. Planetary and Space Science, 2013, 84, 148-152.	1.7	15
148	Far-ultraviolet Spectroscopy of Recent Comets with the Cosmic Origins Spectrograph on the Hubble Space Telescope. Astronomical Journal, 2018, 155, 193.	4.7	15
149	Effects of Global and Regional Dust Storms on the Martian Hot O Corona and Photochemical Loss. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027115.	2.4	15
150	Identification and characterization of a new ensemble of cometary organic molecules. Nature Communications, 2022, 13, .	12.8	15
151	IUE observations of H Lyman-α in comet P/Giacobini-Zinner. Icarus, 1992, 97, 260-268.	2.5	14
152	CHANDRA OBSERVATIONS OF COMETS C/2012 S1 (ISON) AND C/2011 L4 (PanSTARRS). Astrophysical Journal, 2016, 818, 199.	4.5	14
153	Solar Wind Interaction With the Martian Upper Atmosphere: Roles of the Cold Thermosphere and Hot Oxygen Corona. Journal of Geophysical Research: Space Physics, 2018, 123, 6639-6654.	2.4	14
154	ROSINA ion zoo at Comet 67P. Astronomy and Astrophysics, 2020, 642, A27.	5.1	14
155	Observations and analysis of O(1D) and NH2 line profiles for the coma of comet P/Halley. Astrophysical Journal, 1995, 440, 349.	4.5	14
156	Water Production Rates in Comet P/Halley from IUE Observations of HI Lyman-β. Icarus, 1993, 105, 557-567.	2.5	13
157	SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR WIND ANISOTROPIES OBSERVATIONS OF FIVE MODERATELY BRIGHT COMETS: 1999-2002. Astronomical Journal, 2008, 135, 1533-1550.	4.7	13
158	A comparison between the two lobes of comet 67P/Churyumov–Gerasimenko based on D/H ratios in H2O measured with the Rosetta/ROSINA DFMS. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4734-4740.	4.4	13
159	Molecule-dependent oxygen isotopic ratios in the coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5855-5862.	4.4	13
160	Cyanogen, cyanoacetylene, and acetonitrile in comet 67P and their relation to the cyano radical. Astronomy and Astrophysics, 2021, 647, A22.	5.1	13
161	Convolution of cometary brightness profiles by circular diaphragms. Astronomical Journal, 1978, 83, 1459.	4.7	13
162	Brightness profiles of CO/+/ in the ionosphere of Comet West /1976 VI/. Astrophysical Journal, 1980, 238, 381.	4.5	13

#	Article	IF	CITATIONS
163	The effect of using different scale lengths on the production rates of Comet 46P/Wirtanen. Planetary and Space Science, 2004, 52, 573-580.	1.7	12
164	Hot carbon corona in Mars' upper thermosphere and exosphere: 2. Solar cycle and seasonal variability. Journal of Geophysical Research E: Planets, 2014, 119, 2487-2509.	3.6	12
165	Hall effect in the coma of 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2835-2841.	4.4	12
166	The Production Rate and Possible Origin of O ((1) d) in Comet Bennett 1970 II. Astrophysical Journal, 1976, 209, L149.	4.5	12
167	Production Rate and Origin of H2O(+) in Comet Bennett 1970 II. Astrophysical Journal, 1976, 209, L153.	4.5	12
168	Ponderomotive acceleration in the auroral region: A kinetic simulation. Journal of Geophysical Research, 1995, 100, 23901.	3.3	11
169	SWAN observations of 9P/Tempel 1 around the Deep Impact event. Icarus, 2007, 187, 109-112.	2.5	11
170	Ultraviolet observations of the hydrogen coma of comet C/2013 A1 (Siding Spring) by MAVEN/IUVS. Geophysical Research Letters, 2015, 42, 8803-8809.	4.0	11
171	A NEW 3D MULTI-FLUID MODEL: A STUDY OF KINETIC EFFECTS AND VARIATIONS OF PHYSICAL CONDITIONS IN THE COMETARY COMA. Astrophysical Journal, 2016, 833, 160.	4.5	11
172	Examining the exobase approximation: DSMC models of Titan's upper atmosphere. Icarus, 2016, 272, 290-300.	2.5	11
173	P/Halley - Effects of time-dependent production rates on spatial emission profiles. Astrophysical Journal, 1993, 409, 790.	4.5	11
174	Title is missing!. Astrophysics and Space Science, 2000, 274, 407-421.	1.4	10
175	Martian atmosphere as observed by VIRTISâ€M on Rosetta spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	10
176	<i>GALEX</i> FUV OBSERVATIONS OF COMET C/2004 Q2 (MACHHOLZ): THE IONIZATION LIFETIME OF CARBON. Astrophysical Journal, 2011, 726, 8.	4.5	10
177	Chandra ACIS-S imaging spectroscopy of anomalously faint X-ray emission from Comet 103P/Hartley 2 during the EPOXI encounter. Icarus, 2013, 222, 752-765.	2.5	10
178	Effect of the Tiger Stripes on the water vapor distribution in Enceladus' exosphere. Journal of Geophysical Research E: Planets, 2014, 119, 2658-2667.	3.6	10
179	WATER PRODUCTION IN COMETS C/2011 L4 (PanSTARRS) AND C/2012 F6 (LEMMON) FROM OBSERVATIONS WITH <i>SOHO</i> /SWAN. Astronomical Journal, 2014, 147, 126.	4.7	10
180	Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumovâ€Gerasimenko. Journal of Geophysical Research: Space Physics, 2016, 121, 804-816.	2.4	10

#	Article	IF	CITATIONS
181	Testing Short-term Variability and Sampling of Primary Volatiles in Comet 46P/Wirtanen. Planetary Science Journal, 2021, 2, 20.	3.6	10
182	Analysis of the Pioneer-Venus Lyman-Â Image of the Hydrogen Coma of Comet P/Halley. Science, 1991, 253, 1008-1010.	12.6	9
183	Analysis of Hydrogen Lyman-α Observations of the Coma of Comet P/Halley near Perihelion. Icarus, 1995, 113, 119-128.	2.5	9
184	IN SITU PLASMA MEASUREMENTS OF FRAGMENTED COMET 73P SCHWASSMANN–WACHMANN 3. Astrophysical Journal, 2015, 815, 12.	4.5	9
185	Time-dependent analysis of 8 days of CN spatial profiles in comet P/Halley. Astrophysical Journal, 1994, 435, 870.	4.5	9
186	Multiple Scattering of Hydrogen Lyα Radiation in the Coma of Comet Hyakutake (C/1996 B2). Astrophysical Journal, 2000, 531, 599-611.	4.5	9
187	Correlating eastâ€west asymmetries in the Jovian magnetosphere and the Io sodium cloud. Geophysical Research Letters, 1987, 14, 973-976.	4.0	8
188	High-resolution spectra of the 6300-Ã region of Comet P/Halley. Icarus, 1991, 91, 270-279.	2.5	8
189	A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere. Geophysical Research Letters, 2015, 42, 8810-8818.	4.0	8
190	Analysis of the dust jet imaged by <i>Rosetta</i> VIRTIS-M in the coma of comet 67P/Churyumov–Gerasimenko on 2015 April 12. Monthly Notices of the Royal Astronomical Society, 2016, 462, S370-S375.	4.4	8
191	Far-UV emissions from the SL9 impacts with Jupiter. Geophysical Research Letters, 1995, 22, 2425-2428.	4.0	7
192	Models for the Comet Dynamical Environment. Journal of Guidance, Control, and Dynamics, 2007, 30, 1445-1454.	2.8	7
193	Comparison of the dust distributions in the innermost comae of comets—1P/Halley and 19P/Borrelly spacecraft observations. Planetary and Space Science, 2007, 55, 974-985.	1.7	6
194	THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT). Astrophysical Journal, 2015, 809, 156.	4.5	6
195	A possible mechanism for the formation of magnetic field dropouts in the coma of 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S468-S475.	4.4	6
196	First in-situ detection of the cometary ammonium ion NH\$_4^{+}\$ (protonated ammonia NH) Tj ETQq0 0 0 rgB Society, 0, , stw3370.	T /Overloc 4.4	ck 10 Tf 50 14 6
197	A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov–Gerasimenko. Astrophysical Journal, 2017, 850, 72.	4.5	5
198	Water Production Rate of C/2020 F3 (NEOWISE) from SOHO/SWAN over Its Active Apparition. Astrophysical Journal Letters, 2021, 907, L38.	8.3	5

#	Article	IF	CITATIONS
199	2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods. Icarus, 2015, 257, 362-376.	2.5	4
200	Comet C/2017 S3 (PanSTARRS): Outbursts and Disintegration. Astrophysical Journal Letters, 2019, 884, L39.	8.3	4
201	Water production rates from SOHO/SWAN observations of six comets: 2017–2020. Icarus, 2021, 365, 114509.	2.5	4
202	Lyα Observations of Comet C/2013 A1 (Siding Spring) Using MAVEN IUVS Echelle. Astronomical Journal, 2020, 160, 10.	4.7	3
203	A 3D Physicsâ€Based Particle Model of the Venus Oxygen Corona: Variations With Solar Activity. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	3
204	Properties of the dust in the coma of 67P/Churyumov-Gerasimenko observed with VIRTIS- M. Monthly Notices of the Royal Astronomical Society, 2016, , stw3197.	4.4	2
205	Mass spectrometric characterization of the Rosetta Spacecraft contamination. Proceedings of SPIE, 2016, , .	0.8	2
206	Comet 21P/Giacobini-Zinner: Water production activity over 20†years with SOHO/SWAN. Icarus, 2021, 357, 114242.	2.5	2
207	"Operating spacecraft around comets: Evaluation of the near-nucleus environment― Acta Astronautica, 2022, 195, 365-378.	3.2	2
208	Development of a General Purpose 3D DSMC Flow Solver on Unstructured Meshes. , 2003, , .		1
209	DSMC Simulation of the Cometary Coma. AIP Conference Proceedings, 2003, , .	0.4	1
210	Monte-Carlo Model for Dust/Gas Interaction in Rarefied Flows. , 2005, , .		1
211	SWAN observations of 9P/Tempel 1 around the Deep Impact event. Icarus, 2007, 191, 263-266.	2.5	1
212	Neutral Upper Atmosphere and Ionosphere Modeling. Space Sciences Series of ISSI, 2008, , 107-141.	0.0	1
213	Science Enhancements by the MAVEN Participating Scientists. Space Science Reviews, 2015, 195, 319-355.	8.1	1
214	Refractory elements in the gas phase for comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2022, 658, A87.	5.1	1
215	An Early Report on lue Observations of the Impact of Comet Shoemaker-Levy With Jupiter. Highlights of Astronomy, 1995, 10, 636-637.	0.0	0
216	Analysis of Midlatitude Auroral Emissions Observed during the Impact of Comet Shoemaker–Levy 9 with Jupiter. Icarus, 1999, 142, 106-115.	2.5	0

#	Article	IF	CITATIONS
217	Plasma flow past cometary and planetary satellite atmospheres. Geophysical Monograph Series, 2002, , 151-167.	0.1	Ο
218	Realistic Models for the Comet Dynamical Environment. , 2006, , .		0
219	Kinetic simulation of neutralâ^•ionized gas and electrically charged dust in the coma of comet 67Pâ^•Churyumov-Gerasimenko. , 2011, , .		0
220	Hale-Bopp: What Makes a Big Comet Different? Coma Dynamics: Observations and Theory. , 2002, , 73-90.		0