
Suresh Reddy Cirandur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An efficient nano-FGT catalyzed green synthesis of α-aminophosphonates and evaluation of their antioxidant, anti-inflammatory activity and molecular docking studies. Synthetic Communications, 2022, 52, 129-144.	1.1	4
2	Green synthesis and antimicrobial activity of substituted diethyl (((5-(ethylthio)-1,3,4-thiadiazol-2-yl)amino)(phenyl)methyl)phosphonates. Synthetic Communications, 2022, 52, 268-279.	1.1	2
3	Green and eco-friendly synthesis of α-hydroxyphosphonates as antioxidant and antimicrobial agents. Journal of Molecular Structure, 2022, 1256, 132554.	1.8	4
4	Synthesis, antioxidant activity, and αâ€glucosidase enzyme inhibition of αâ€aminophosphonate derivatives bearing piperazineâ€1,2,3â€triazole moiety. Journal of Heterocyclic Chemistry, 2021, 58, 172-181.	1.4	15
5	Design, synthesis, cytotoxic evaluation and molecular docking studies of novel thiazolyl α-aminophosphonates. Research on Chemical Intermediates, 2021, 47, 1139-1160.	1.3	11
6	Efficient catalyst free green synthesis and <i>inÂvitro</i> antimicrobial, antioxidant and molecular docking studies of <i>l±</i> -substituted aromatic/heteroaromatic aminomethylene bisphosphonates. Synthetic Communications, 2021, 51, 747-764.	1,1	4
7	Synthesis of \hat{l} ±-aminophosphonates by the Kabachnik-Fields reaction. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 353-381.	0.8	17
8	<scp>2â€Aminoâ€3 yanoâ€4H</scp> hromeneâ€4â€ylphosphonates as potential antiviral agents: Synthesi and in silico approach. Journal of Heterocyclic Chemistry, 2021, 58, 137-152.	is, in ovo 1.4	4
9	Green Synthesis, Antioxidant, and Plant Growth Regulatory Activities of Novel α-Furfuryl-2-alkylaminophosphonates. ACS Omega, 2021, 6, 2934-2948.	1.6	11
10	Synthesis and Anti-Pancreatic Cancer Activity Studies of Novel 3-Amino-2-hydroxybenzofused 2-Phospha-γ-lactones. ACS Omega, 2021, 6, 11375-11388.	1.6	6
11	Novel α-Aminophosphonates of imatinib Intermediate: Synthesis, anticancer Activity, human Abl tyrosine kinase Inhibition, ADME and toxicity prediction. Bioorganic Chemistry, 2021, 109, 104718.	2.0	18
12	Metalâ€free multicomponent synthesis and in vitro antioxidant activity of indolylpyrazolopyrimidines. Journal of Heterocyclic Chemistry, 2021, 58, 1472-1483.	1.4	0
13	Green Biosynthesis, Antioxidant, Antibacterial, and Anticancer Activities of Silver Nanoparticles of Luffa acutangula Leaf Extract. BioMed Research International, 2021, 2021, 1-28.	0.9	14
14	Synthesis and Antimicrobial Activity of Diethyl [(Substituted) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Td (Pheny Chemistry, 2021, 91, 2506-2514.	yl)(5-hydro 0.3	oxy-3-methyl [.] 1
15	Nano CuO–Agâ€catalyzed synthesis of some novel pyrano[2,3â€d] pyrimidine derivatives and evaluation of their bioactivity. Journal of the Chinese Chemical Society, 2020, 67, 805-820.	0.8	14
16	potent <i>α</i> -glucosidase inhibitors. Synthetic Communications, 2020, 50, 587-601.	1.1	9
17	Nano silver particles catalyzed synthesis, molecular docking and bioactivity of α-thiazolyl aminomethylene bisphosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 409-420.	0.8	3
18	A meglumine catalyst–based synthesis, molecular docking, and antioxidant studies of dihydropyrano[3, 2―b]chromenedione derivatives. Journal of Heterocyclic Chemistry, 2020, 57, 355-369.	1.4	8

#	Article	IF	CITATIONS
19	Excellency of pyrimidinyl moieties containing α-aminophosphonates over benzthiazolyl moieties for thermal and structural stability of stem bromelain. International Journal of Biological Macromolecules, 2020, 165, 2010-2021.	3.6	6
20	Green Synthesis of 1-Aryl-2,3,4,9-Tetrahydro-1H-B-Carbolines using Fe(lii)-Montmorillonite and Study of their Antimicrobial Activity. Pharmaceutical Chemistry Journal, 2020, 54, 365-371.	0.3	3
21	Visible-light-promoted photocatalyst- and additive-free intermolecular trifluoromethyl-thio(seleno)cyanation of alkenes. Green Chemistry, 2020, 22, 5589-5593.	4.6	35
22	Calcium bromide catalysed synthesis and anticoagulant activity of bis(Î \pm -aminophosphonates). AlP Conference Proceedings, 2020, , .	0.3	2
23	Green synthesis, antibacterial, antiviral and molecular docking studies of α-aminophosphonates. Synthetic Communications, 2020, 50, 2655-2672.	1.1	13
24	Design and synthesis of diethyl(substituted 2â€benzylbenzofuranâ€3â€yl)phosphonates as antioxidant and antimicrobial agents. Journal of Heterocyclic Chemistry, 2020, 57, 1414-1427.	1.4	3
25	Green one-pot synthesis of N-bisphosphonates as antimicrobial and antioxidant agents. Monatshefte Für Chemie, 2020, 151, 251-260.	0.9	7
26	Synthesis of New 4-Chloro-6-Methylpyrimidin-2-yl-Aminophosphonates as Potential DU145 and A549 Cancer Cell Inhibitors. Letters in Drug Design and Discovery, 2020, 17, 396-410.	0.4	3
27	Green synthesis of 2-amino-3-cyano-4H-chromen-4-ylphosphonates. AIP Conference Proceedings, 2020, , .	0.3	0
28	Ultrasound-assisted PSA catalyzed one-pot green synthesis of pyrazolyl pyrrole derivatives. AIP Conference Proceedings, 2020, , .	0.3	0
29	Green synthesis, molecular docking, anti-oxidant and anti-inflammatory activities of α-aminophosphonates. Medicinal Chemistry Research, 2019, 28, 1740-1754.	1.1	24
30	A Concise and Efficient Synthesis of an Impurity, N-Desmethyl Alcaftadine from Alcaftadine: An H1 Antagonist. Asian Journal of Chemistry, 2019, 31, 2257-2260.	0.1	1
31	Ceric ammonium nitrate (CAN) catalyzed synthesis and <i>α</i> -glucosidase activity of some novel tetrahydropyridine phosphonate derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 812-819.	0.8	9
32	Meglumine sulfate-catalyzed one-pot green synthesis and antioxidant activity of α-aminophosphonates. Synthetic Communications, 2019, 49, 563-575.	1.1	15
33	A Simple and Convenient Strategy for the Synthesis of Novel Ten, Twelve, and Fourteenâ€membered Phosphorus Macrocyclic Compounds. Journal of Heterocyclic Chemistry, 2019, 56, 818-823.	1.4	1
34	Meglumine as a green, efficient and reusable catalyst for synthesis and molecular docking studies of bis(indolyl)methanes as antioxidant agents. Bioorganic Chemistry, 2019, 87, 465-473.	2.0	18
35	Nano Sb2O3 catalyzed green synthesis, cytotoxic activity, and molecular docking study of novel α-aminophosphonates. Medicinal Chemistry Research, 2019, 28, 528-544.	1.1	11
36	Tungstosulfonic acid-catalyzed green synthesis and bioassay of α-aminophosphonates. Monatshefte Für Chemie, 2019, 150, 1101-1109.	0.9	7

#	Article	IF	CITATIONS
37	Prospects to the formation and control of potential dimer impurity EÂof pantoprazole sodium sesquihydrate. Journal of Pharmaceutical Analysis, 2019, 9, 170-177.	2.4	3
38	rGOâ€\$O3H Catalysed Green Synthesis of Fluoroâ€\$ubstituted Aminomethylene Bisphosphonates and their Anticancer, Molecular Docking studies. ChemistrySelect, 2019, 4, 13006-13011.	0.7	8
39	Palladium acetate-catalysed one-pot green synthesis of bis α-aminophosphonates. Research on Chemical Intermediates, 2019, 45, 1401-1420.	1.3	6
40	Design and Synthesis of Some New Benzimidazole Containing Pyrazoles and Pyrazolyl Thiazoles as Potential Antimicrobial Agents. Journal of Heterocyclic Chemistry, 2019, 56, 589-596.	1.4	21
41	Design and Synthesis of Benzopyranopyrimidinyl Phosphonates as Cytotoxic and Antioxidant Agents. Letters in Drug Design and Discovery, 2019, 16, 721-733.	0.4	5
42	One-pot green synthesis and bio-assay of pyrazolylphosphonates. Research on Chemical Intermediates, 2018, 44, 3475-3491.	1.3	11
43	Microwave assisted synthesis and Anti-microbial activity of new Diethyl ((dialkoxyphosphoryl)) Tj ETQq1 1 0.7843 Elements, 2018, 193, 329-334.	0.8 014 rgBT	Overlock 10 6
44	Nano-Cuo–Au-catalyzed solvent-free synthesis of α -aminophosphonates and evaluation of their antioxidant and α -glucosidase enzyme inhibition activities. Synthetic Communications, 2018, 48, 1148-1163.	1.1	15
45	Nano-TiO ₂ /SiO ₂ catalyzed synthesis, theoretical calculations and bioactivity studies of new α-aminophosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 562-567.	0.8	6
46	Synthesis and Antioxidant Properties of New Substituted 8â€Methylâ€6â€phenylâ€5,6â€dihydroâ€4 <i>H</i> â€1,3,2â€benzodioxaphosphocineâ€2â€oxide Derivatives. Jou Heterocyclic Chemistry, 2017, 54, 653-659.	ur na lof	0
47	TiO ₂ –SiO ₂ Catalyzed Ecoâ€friendly Synthesis and Antioxidant Activity of Benzopyrano[2,3â€ <i>d</i>]pyrimidine Derivatives. Journal of Heterocyclic Chemistry, 2017, 54, 2598-2604.	1.4	11
48	Synthesis and antioxidant activity of some new N-alkylated pyrazole-containing benzimidazoles. Chemistry of Heterocyclic Compounds, 2017, 53, 173-178.	0.6	23
49	An Efficient, Facile Synthesis of Etoricoxib Substantially Free from Impurities: Isolation, Characterization and Synthesis of Novel Impurity. ChemistrySelect, 2017, 2, 9722-9725.	0.7	3
50	Environmentally Benign and Facile Process for the Synthesis of Pantoprazole Sodium Sesquihydrate: Phase Transformation of Pantoprazole Sodium Heterosolvate to Pantoprazole Sodium Sesquihydrate. ACS Omega, 2017, 2, 5460-5469.	1.6	6
51	One-pot green synthesis and cytotoxicity of new α-aminophosphonates. Research on Chemical Intermediates, 2017, 43, 7087-7103.	1.3	12
52	Nano ZnO catalyzed green synthesis and cytotoxic assay of pyridinyl and pyrimidinyl bisphosphonates. Monatshefte FA¼r Chemie, 2017, 148, 1843-1851.	0.9	13
53	An efficient and facile synthesis of D-cycloserine substantially free from potential impurities. Chemistry of Heterocyclic Compounds, 2017, 53, 1248-1253.	0.6	4
54	Solvent-free synthesis of α-aminophosphonates: Cellulose-SO 3 H as an efficient catalyst. Arabian Journal of Chemistry, 2017, 10, S368-S375.	2.3	11

SURESH REDDY CIRANDUR

#	Article	IF	CITATIONS
55	Cellulose-SO3H catalyzed synthesis of bis(α-aminophosphonates) and their antioxidant activity. Organic Communications, 2017, 10, 46-55.	0.8	8
56	Triton X-100 catalyzed synthesis of α-aminophosphonates. Arabian Journal of Chemistry, 2016, 9, S685-S690.	2.3	11
57	A simple and convenient protocol for the synthesis of seven- and eight-membered phosphorus heterocycles. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 719-722.	0.8	1
58	PEPPSI-SONO-SP ² : a new highly efficient ligand-free catalyst system for the synthesis of tri-substituted triazine derivatives via Suzuki–Miyaura and Sonogashira coupling reactions under a green approach. New Journal of Chemistry, 2016, 40, 5135-5142.	1.4	19
59	Caveat in the stereochemical outcome of the organocatalytic Diels–Alder reaction in PEG-400. RSC Advances, 2016, 6, 76132-76136.	1.7	4
60	Phosphosulfonic acidâ€catalyzed green synthesis and bioassay of αâ€arylâ€Î± <i>′</i> â€4,3,4â€thiadiazolyl aminophosphonates. Heteroatom Chemistry, 2016, 27, 269-278.	0.4	20
61	Nano Gd ₂ O ₃ catalyzed synthesis and anti-oxidant activity of new α-aminophosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 933-938.	0.8	12
62	Supramolecular catalysis by β-cyclodextrin for the synthesis of kojic acid derivatives in water. New Journal of Chemistry, 2016, 40, 1693-1697.	1.4	41
63	Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chinese Chemical Letters, 2016, 27, 16-20.	4.8	42
64	Investigation of binding mechanism of novel 8-substituted coumarin derivatives with human serum albumin and α-1-glycoprotein. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2023-2036.	2.0	20
65	Synthesis and Bioassay of Dihydropyrano[3,2â€ <i>b</i>]chromenediones. Journal of Heterocyclic Chemistry, 2016, 53, 493-498.	1.4	4
66	Microwave Energized Synthesis of 2â€Aroylindole Derivatives: Piperidine/DMF as an Effective Medium. Journal of Heterocyclic Chemistry, 2016, 53, 620-625.	1.4	6
67	TiO ₂ -SO ₄ ²⁻ Catalyzed Synthesis and Antimicrobial Activity / Molecular Docking Studies of β-Indolylnitroalkanes. Combinatorial Chemistry and High Throughput Screening, 2016, 19, 290-297.	0.6	4
68	Zinc Tetrafluoroborate Catalyzed Synthesis, Molecular Docking and Cytotoxicity of Pyrrolidinyl Aminophosphonates. Letters in Drug Design and Discovery, 2016, 14, 139-150.	0.4	2
69	An Elegant Synthesis of a New Class of Journal of Heterocyclic Chemistry, 2015, 52, 1876-1882.	1.4	2
70	Polyethylene glycol (PEG-400): An efficient medium for the synthesis of 1,2-disubstituted benzimidazoles. Cogent Chemistry, 2015, 1, 1049932.	2.5	11
71	Silica-Supported Tungstic Acid Catalyzed Synthesis and Antioxidant Activity of <i>α</i> -Hydroxyphosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1479-1488.	0.8	14
72	Tween 20-/H ₂ O Promoted Green Synthesis, Computational and Antibacterial Activity of Amino Acid Substituted Methylene Bisphosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 2040-2050.	0.8	8

SURESH REDDY CIRANDUR

#	Article	IF	CITATIONS
73	Synthesis of Novel 2-Amino-N-hydroxybenzamide Antimicrobials. Synthetic Communications, 2015, 45, 838-846.	1.1	1
74	Synthesis of N-(3-picolyl)-based 1,3,2λ5-benzoxazaphosphinamides as potential 11β-HSD1 enzyme inhibitors. Medicinal Chemistry Research, 2015, 24, 1119-1135.	1.1	16
75	Efficient synthesis of polyfunctionalized thiophene-2,3-diones and thiophen-3(2H)-ones using β-oxodithioesters. RSC Advances, 2015, 5, 64797-64801.	1.7	7
76	Ionic Liquid–Promoted Phospha-Michael Reaction: Convenient Access to β-Nitrophosphonates. Synthetic Communications, 2015, 45, 2083-2091.	1.1	6
77	Efficient synthesis, antioxidant and antimicrobial profiles of 2-(arylamino)- and 2-(heteroarylamino)- 1,3,4,2λ5-dioxazaphosphinin-2-ones. Chemistry of Heterocyclic Compounds, 2015, 51, 194-198.	0.6	1
78	Palladium-Catalyzed Regioselective Domino Cyclization of Cyclohexadienones. Journal of Organic Chemistry, 2015, 80, 5566-5571.	1.7	44
79	Tandem Prins and Friedel–Crafts Cyclizations for the StereoÂselective Synthesis of trans-Fused Hexahydro-1H-benzo[g]isochromene Derivatives. Synthesis, 2015, 47, 1117-1122.	1.2	27
80	Efficient Synthesis of α-Aminophosphonates and Evaluation of Significance of PËO Group towards Antioxidant Activity. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 232-239.	0.8	17
81	Synthesis and bio-evaluation of novel 7-hydroxy coumarin derivatives via Knoevenagel reaction. Research on Chemical Intermediates, 2015, 41, 1115-1133.	1.3	15
82	Sodium Perborate: A Facile Catalyst for Allylation of Active Centers. Synthetic Communications, 2015, 45, 355-362.	1.1	1
83	PAA-SIO2 Catalyzed Synthesis, Uv Absorption, and Fluorescence Emission Studies of Diethyl (Aryl/Hetero Aryl Amino)(Pyren-1-Yl)Methylphosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 449-460.	0.8	7
84	Diastereoselective Synthesis of (+)-Pseudohygroline <i>via</i> Proline-catalyzed α-Hydroxylation. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	1
85	The Synthesis and Bioactivity of Dimethyl (2,3- Dihydrobenzo[b][1,4]Dioxin-6-Yl)(Aryl) Tj ETQq1 1 0.784314 rgB 551-557.	T /Overloc 0.8	k 10 Tf 50 2 7
86	Neat synthesis and antioxidant activity of α-aminophosphonates. Arabian Journal of Chemistry, 2014, 7, 833-838.	2.3	11
87	Synthesis and Biological Evaluation of Benzo[<i>b</i>]furans as Inhibitors of Tubulin Polymerization and Inducers of Apoptosis. ChemMedChem, 2014, 9, 117-128.	1.6	34
88	An Elegant Microwave Assisted Oneâ€Pot Synthesis of Di(αâ€aminophosphonate) Pesticides. Archiv Der Pharmazie, 2014, 347, 819-824.	2.1	13
89	Synthesis and biological evaluation of cinnamido linked benzophenone hybrids as tubulin polymerization inhibitors and apoptosis inducing agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2309-2314.	1.0	17
90	Designing, synthesis, and characterization of some novel coumarin derivatives as probable anticancer drugs. Medicinal Chemistry Research, 2013, 22, 4146-4157.	1.1	14

#	Article	IF	CITATIONS
91	Design, Synthesis, Antioxidant, and Antiâ€Breast Cancer Activities of Novel Diethyl(alkyl/aryl/heteroarylamino)(4â€(pyridinâ€⊋â€yl)phenyl)methylphosphonates. Archiv Der Pharmazie, 2013, 346, 380-391.	2.1	19
92	CeCl3·7H2O: a highly efficient catalyst for the synthesis of 1-substituted-octahydro-[1,3,2]diazaphospholo[1,5-a]pyridine-1-oxide. Tetrahedron Letters, 2013, 54, 6071-6076.	0.7	12
93	Synthesis and Bioassay of Ethyl-2- (2-((Diethoxyphosphoryl) (Aryl)) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 Elements, 2013, 188, 1402-1411.	667 Td (N 0.8	Aethylaminc 4
94	Green Synthesis of αâ€ <scp>A</scp> minophosphonate Derivatives on a Solid Supported Ti <scp>O</scp> ₂ – <scp>S</scp> i <scp>O</scp> ₂ Catalyst and Their Anticancer Activity. Archiv Der Pharmazie, 2013, 346, 667-676.	2.1	21
95	Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. International Journal of Nanomedicine, 2013, 8, 3355.	3.3	76
96	Solvent-free synthesis of novel 2,10-dichoro-12-trichloromethyl-6-substituted xanthato-12H-dibenzo[d,g] [1,3,2] dioxaphosphocin-6-sulfides. Green Chemistry Letters and Reviews, 2012, 5, 475-479.	2.1	1
97	Tween-20: An Efficient Catalyst for One-Pot Synthesis of α-Aminophosphonates in Aqueous Media. Phosphorus, Sulfur and Silicon and the Related Elements, 2012, 187, 523-534.	0.8	33
98	An efficient KHSO ₄ catalyzed synthesis of xanthenes. Heterocyclic Communications, 2012, 18, 53-56.	0.6	4
99	Green Synthesis and Bioactivity of 2-Amino-4 <i>H</i> -chromen-4-yl-phosphonates. Chemical and Pharmaceutical Bulletin, 2012, 60, 854-858.	0.6	30
100	Facile Synthesis, Antioxidant and Antimicrobial Activity of Amino Methylene Bisphosphonates. Chemical and Pharmaceutical Bulletin, 2012, 60, 104-109.	0.6	18
101	Preparation of Tetraoxadiphosphadiborocane-2,6-diones. Synthetic Communications, 2012, 42, 1026-1032.	1.1	1
102	Ytterbium perfluorooctanoate [Yb(PFO)3]: a novel and efficient catalyst for the synthesis of tetrahydrobenzo[a]xanthene-11-ones under microwave irradiation. Catalysis Science and Technology, 2012, 2, 1382.	2.1	14
103	PEG-SO3H catalyzed synthesis and cytotoxicity of α-aminophosphonates. European Journal of Medicinal Chemistry, 2012, 47, 553-559.	2.6	60
104	Synthesis, Antimicrobial, and Antioxidant Activity of New α-Aminophosphonates. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1411-1421.	0.8	33
105	Polyethylene Glycol–Promoted Dialkyl, Aryl/Heteroaryl Phosphonates. Synthetic Communications, 2011, 41, 3462-3468.	1.1	13
106	Polyethylene glycol in water: a simple and environment friendly medium for C–P bond formation. Catalysis Science and Technology, 2011, 1, 1665.	2.1	19
107	Synthesis and antimicrobial activity of tris phosphonates. Journal of Heterocyclic Chemistry, 2011, 48, 221-225.	1.4	6
108	Synthesis, characterization, and evaluation of antimicrobial activities of a new class of macrocyclic phosphonates. Journal of Heterocyclic Chemistry, 2011, 48, 1229-1233.	1.4	4

#	Article	IF	CITATIONS
109	Synthesis and bio-activity evaluation of tetraphenyl(phenylamino) methylene bisphosphonates as antioxidant agents and as potent inhibitors of osteoclasts in vitro. European Journal of Medicinal Chemistry, 2011, 46, 1798-1802.	2.6	32
110	Synthesis and Bioassay of Alkyl-2-[(5,6-dimethyl-2-sulfido-1,3,4,7,2-dioxadiazaphosphepin-2-yl)amino] Alkyl/Aryl Esters. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1193-1197.	0.6	3
111	Synthesis, antioxidant and antimicrobial activity of novel benzene-1,4-diamine-bis-dioxaphosphepine-6λ5iminophosphoranes. Journal of Heterocyclic Chemistry, 2010, 47, NA-NA.	1.4	4
112	Green Synthesis of Aminobisphosphonates Under Microwave Irradiation. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 186, 74-80.	0.8	21
113	Microwave Assisted One-pot Synthesis of Novel α-Aminophosphonates and heir Biological Activity. Bulletin of the Korean Chemical Society, 2010, 31, 1863-1868.	1.0	33
114	SYNTHESIS, CHARACTERIZATION AND BIO-ACTIVITY OF SOME NEW α-AMINOPHOSPHONATES . Bulletin of the Chemical Society of Ethiopia, 2009, 23, .	0.5	2
115	Synthesis and Bioactivity of Some New 2-(Alkoxy carbonyl alkyl)-6-bromo-3,4-dihydro-3-(α-methyl) Tj ETQq1 1 0. 810-814.	784314 r 2.6	gBT /Overlock 3
116	Synthesis of 3-(arylamino)-5-bromo-2-phenyl-2,3-dihydro-2λ ⁵ -benzo[<i>d</i>][1,2]-oxaphosphol-2-oxides. Synthetic Communications, 2009, 39, 1310-1316.	1.1	6
117	Synthesis and Antimicrobial Activity of Bisphosphonates. Journal of Chemical Research, 2009, 2009, 258-260.	0.6	17
118	Synthesis and bioâ€activity of novel iminophosphoranes. Journal of Heterocyclic Chemistry, 2008, 45, 1337-1341.	1.4	5
119	Synthesis and antimicrobial activity of 5,5′-dimethyl-2-oxido-[1,3,2]-dioxaphos-phorinane-2-yl-amino carboxylates. Heteroatom Chemistry, 2008, 19, 256-260.	0.4	16
120	Synthesis and anticancer activity of new class of bisphosphonates/phosphanamidates. European Journal of Medicinal Chemistry, 2008, 43, 885-892.	2.6	47
121	Oxone as a Mild, Inexpensive, and Environmentally Benign Oxidant for the α-Thiocyanation of Ketones. Synthetic Communications, 2008, 38, 2089-2095.	1.1	12
122	Phosphomolybdic Acid/SiO2 as Heterogeneous Solid Acid Catalyst for the Rapid Synthesis of N-Substituted Pyrroles. Synthetic Communications, 2008, 38, 3456-3464.	1.1	18
123	Synthesis of Novel (3a,S)â€1â€Aryl/aryloxy/alkoxyâ€3a,4â€dihydroâ€3 <i>H</i> â€1λ ⁵ â€[1,3,2]oxa [3,4â€a] indoleâ€1â€ones, Thiones, and Selenones. Synthetic Communications, 2008, 38, 1398-1406.	zaphosph	iolo ₅
124	Synthesis and Biological Activity of Some new 2-Heterocyclic/acyclic amino/4'-acetamidophenoxy-3-(4-chloro-phenyl)-3, 4-dihydrobenzo[e]- [1,3,2]oxazaphosphinine 2-sulfides. E-Journal of Chemistry, 2008, 5, 1025-1032.	0.4	1
125	Synthesis and Antimicrobial Activity of New 2,10â€Dichloroâ€6â€phenylaminobenzylâ€dibenzo[d,g][1,3 ,6,2]dioxathiaphosphocin 6â€Oxides. Journal of Heterocyclic Chemistry, 2008, 45, 103-107.	1.4	2
126	Synthesis of New Benzoxazaphosphinine/Benzoxazaphosphole/Diazaphosphaphenaleneâ€2â€sulfides using Lawesson's Reagent. Synthetic Communications, 2007, 38, 85-91.	1.1	3

#	Article	IF	CITATIONS
127	Syntheses and Antimicrobial Activity of Some Novel 6â€Substituted Dibenzo[d,Âf][1,3,2]dioxaphophepinâ€6â€oxides, Sulfides, and Selenides. Synthetic Communications, 2007, 37, 1697-1708.	1.1	6
128	Syntheses, spectral property, and antimicrobial activities of 6-α-amino dibenzo [d,f][1,3,2]dioxaphosphepin 6-oxides. Heteroatom Chemistry, 2007, 18, 2-8.	0.4	35
129	Synthesis and antimicrobial activity of some new <i>N</i> â€(substituted) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Journal of Heterocyclic Chemistry, 2007, 44, 369-373.) Tf 50 667 1.4	7 Td (phenyl 3
130	Syntheses of substituted 8-(aminobenzyl)dinaphthodioxaphosphocine 8-oxides. Chemistry of Heterocyclic Compounds, 2007, 43, 1336-1341.	0.6	4
131	Synthesis of dibromodibenzo[d,g][1,3,6,2]dioxathiaphosphocin 6-sulfides. Journal of Heterocyclic Chemistry, 2006, 43, 453-457.	1.4	0
132	\hat{l}^2 -Cyclodextrin promoted allylation of aldehydes with allyltributyltin under supramolecular catalysis in water. Tetrahedron Letters, 2005, 46, 4299-4301.	0.7	20
133	Synthesis and antimicrobial activity of novel 3 substituted 1,5-dihydro-2,4,3-benzodioxaphosphepine 3-oxides. Heteroatom Chemistry, 2005, 16, 572-575.	0.4	22
134	Synthesis and antimicrobial activity of 3â€(<i>N</i> â€arylamino)â€2â€phenylâ€naphtho[1,3â€ <i>d</i>]â€1,2â€oxaphosphole 2â€oxides. Journal of Het Chemistry, 2005, 42, 775-779.	enercyclic	6
135	Facile synthesis, spectral characterization and antimicrobial activity of 6â€substitutedâ€2,4,8,10â€tetraâ€ <i>t</i> â€butyl dibenzo[<i>d,g</i>][1,3,6,2]dioxathiaphosphocin 6â€oxides. of Heterocyclic Chemistry, 2004, 41, 413-417.	Journal	3
136	Synthesis and antimicrobial activity ofN-substitutedN?-[6-methyl-2-oxido-1,3,2-dioxaphosphinino(5,4-b)pyridine-2-yl]ureas. Heteroatom Chemistry, 2003, 14, 509-512.	0.4	9
137	Facile syntheses and antimicrobial studies of 6â€{aryloxy/arylthio/chloroethoxy)â€2,10â€dichloroâ€4,8â€dinitroâ€12â€trichloromemylâ€12 <i>H</i> â€dibenzc 6â€oxides. Journal of Heterocyclic Chemistry, 2003, 40, 345-351.	ı [ĸ ₩d,g <td>,쳐[13,2]dio</td>	,쳐[13,2]dio
138	Synthesis ofN-(Substituted) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 Td (aryl/cyclohexyl)-N'-[5-bromo-5-nitro-2-o Heterocyclic Chemistry, 2003, 40, 535-537.	xido-1,3,2 1.4	-dioxaphosp 9
139	Synthesis, Spectral, and Antimicrobial Activity of 6-Alkylcarbamato-2,10-dichloro-12- trichloromethyl-12H-dibenzo[d,g][1,3,2]- dioxaphosphocin 6-Oxides. Synthetic Communications, 2003, 33, 819-825.	1.1	3
140	Synthesis of 6-Alkyl Carbamato/Alkyl Thiocarbamato-2,10-dichloro-12-trichloromethyl-12 H -dibenzo[d,g][1,3,2]-dioxaphosphocin 6-Oxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1745-1748.	0.8	3
141	Synthesis and antimicrobial activity of novel 2â€alkyl/arylcarbamatoâ€6â€{1,1â€dimethylethyl)â€3â€cyclohexylâ€3,4â€dihydroâ€2 <i>H</i> â€1,3,2â€benzoxa Journal of Heterocyclic Chemistry, 2002, 39, 1039-1044.	z a phosph	ormeâ€2â€e
142	Synthesis of 2-substituted-2,3-dihydro-5-benzoyl-1H-1,3,2-benzodiazaphosphole 2-oxides/sulfides. Heteroatom Chemistry, 2002, 13, 340-345.	0.4	21
143	SYNTHESIS AND SPECTRAL STUDIES OF NOVEL 2-CHLOROETHYL DIOXA/DIOXATHIAPHOSPHOCINS AND BENZODIAZAPHOSPHOLE 2/6/8-OXIDES. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 173, 211-222.	0.8	5
144	SYNTHESIS OF SOME AMINO ACID ESTER LINKED DIOXATHIAPHOSPHOCIN/DIOXAPHOSPHOCIN DERIVATIVES. Synthetic Communications, 2001, 31, 2929-2933.	1.1	4

#	Article	IF	CITATIONS
145	SYNTHESIS, SPECTRAL, X-RAY DIFFRACTION ANALYSIS AND ANTIMICROBIAL ACTIVITY OF 6-ARYLOXY/TRICHLOROMETHYL/CHLOROETHOXY-12-OXO-DIBENZO[d,g] [1,3,2] DIOXAPHOSPHOCIN 6-OXIDES. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 173, 83-104.	0.8	11
146	Synthesis and antimicrobial activity of 8-alkylcarbamato-16H-dinaphtho [2,1-d:1?,2?-g] 1,3,2-dioxaphosphocin 8-oxides. Heteroatom Chemistry, 2001, 12, 16-20.	0.4	9
147	Syntheses and Antimicrobial Activity of 2-Substituted-2,3-Dihydro-3-(4′-Bromophenyl)-1 <i>H</i> -Naphth[1,2- <i>e</i>][1,3,2]Oxazaphosphorin 2-Oxides/Sulfides. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 167, 181-193.	0.8	18
148	Electrochemical reduction behavior and determination of nicoumalone. Electroanalysis, 1992, 4, 725-732.	1.5	1
149	Voltammetric studies of nitrofuroxime. Electroanalysis, 1991, 3, 699-706.	1.5	3
150	Green synthesis of phosphoramidates and evaluation of their <i>α</i> -amylase activity by <i>in silico</i> and <i>inÂvitro</i> studies. Synthetic Communications, 0, , 1-14.	1.1	1