
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087469/publications.pdf Version: 2024-02-01

SVIVAIN CIDADD

#	Article	IF	CITATIONS
1	Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Transactions on Nuclear Science, 2013, 60, 2015-2036.	1.2	366
2	Overview of radiation induced point defects in silica-based optical fibers. Reviews in Physics, 2019, 4, 100032.	4.4	208
3	Recent advances in radiation-hardened fiber-based technologies for space applications. Journal of Optics (United Kingdom), 2018, 20, 093001.	1.0	153
4	Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Optics Express, 2012, 20, 29751.	1.7	129
5	Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. Optics Express, 2012, 20, 8457.	1.7	99
6	Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres. IEEE Transactions on Nuclear Science, 2007, 54, 1115-1119.	1.2	86
7	Radiation Effects on Silica-Based Preforms and Optical Fibers—I: Experimental Study With Canonical Samples. IEEE Transactions on Nuclear Science, 2008, 55, 3473-3482.	1.2	85
8	Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers. Nuclear Instruments & Methods in Physics Research B, 2004, 215, 187-195.	0.6	78
9	Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2013, 60, 4305-4313.	1.2	71
10	Proton- and Gamma-Induced Effects on Erbium-Doped Optical Fibers. IEEE Transactions on Nuclear Science, 2007, 54, 2426-2434.	1.2	68
11	Feasibility of radiation dosimetry with phosphorus-doped optical fibers in the ultraviolet and visible domain. Journal of Non-Crystalline Solids, 2011, 357, 1871-1874.	1.5	66
12	Qualification and Calibration of Single-Mode Phosphosilicate Optical Fiber for Dosimetry at CERN. Journal of Lightwave Technology, 2019, 37, 4643-4649.	2.7	62
13	Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers. IEEE Transactions on Nuclear Science, 2009, 56, 3293-3299.	1.2	60
14	Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions. Optics Letters, 2014, 39, 2541.	1.7	60
15	<tex>\$gamma\$</tex> -Rays and Pulsed X-Ray Radiation Responses of Germanosilicate Single-Mode Optical Fibers: Influence of Cladding Codopants. Journal of Lightwave Technology, 2004, 22, 1915-1922.	2.7	58
16	Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels. Optics Letters, 2014, 39, 5313.	1.7	54
17	High Î ³ -ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors. Optics Express, 2012, 20, 26978.	1.7	53
18	14-MeV Neutron, \$gamma\$-Ray, and Pulsed X-Ray Radiation-Induced Effects on Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2006, 53, 3750-3757.	1.2	50

#	Article	IF	CITATIONS
19	Compaction in Optical Fibres and Fibre Bragg Gratings Under Nuclear Reactor High Neutron and Gamma Fluence. IEEE Transactions on Nuclear Science, 2016, 63, 2317-2322.	1.2	50
20	Influence of Drawing Conditions on the Properties and Radiation Sensitivities of Pure-Silica-Core Optical Fibers. Journal of Lightwave Technology, 2012, 30, 1726-1732.	2.7	46
21	Transient optical absorption in pulsed-X-ray-irradiated pure-silica-core optical fibers: Influence of self-trapped holes. Journal of Non-Crystalline Solids, 2006, 352, 2637-2642.	1.5	42
22	Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing. Optics Express, 2011, 19, 11680.	1.7	42
23	Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors. Scientific Reports, 2017, 7, 8766.	1.6	40
24	Reduction of the radiation-induced absorption in hydrogenated pure silica core fibres irradiated in situ with Î ³ -rays. Journal of Non-Crystalline Solids, 2007, 353, 466-472.	1.5	39
25	Influence of neutron and gamma-ray irradiations on rad-hard optical fiber. Optical Materials Express, 2015, 5, 898.	1.6	39
26	Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh Environment. IEEE Transactions on Nuclear Science, 2014, 61, 3315-3322.	1.2	38
27	Distributed Optical Fiber Radiation Sensing in the Proton Synchrotron Booster at CERN. IEEE Transactions on Nuclear Science, 2018, 65, 1639-1644.	1.2	38
28	Diagnostics hardening for harsh environment in Laser Mégajoule (invited). Review of Scientific Instruments, 2008, 79, 10F301.	0.6	37
29	Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters. IEEE Transactions on Nuclear Science, 2012, 59, 2894-2901.	1.2	36
30	Radiation-induced effects in a new class of optical waveguides: the air-guiding photonic crystal fibers. IEEE Transactions on Nuclear Science, 2005, 52, 2683-2688.	1.2	35
31	Performance of Ge-Doped Optical Fiber as a Thermoluminescent Dosimeter. IEEE Transactions on Nuclear Science, 2013, 60, 4251-4256.	1.2	35
32	Vulnerability analysis of optical fibers for laser megajoule facility: preliminary studies. IEEE Transactions on Nuclear Science, 2005, 52, 1497-1503.	1.2	33
33	Vulnerability of OFDR-based distributed sensors to high Î ³ -ray doses. Optics Express, 2015, 23, 18997.	1.7	33
34	France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes. Sensors, 2017, 17, 1377.	2.1	33
35	Radiation Effects on Silica-Based Preforms and Optical Fibers-II: Coupling <i>Ab initio</i> Simulations and Experiments. IEEE Transactions on Nuclear Science, 2008, 55, 3508-3514.	1.2	32
36	Design of Radiation-Hardened Rare-Earth Doped Amplifiers Through a Coupled Experiment/Simulation Approach. Journal of Lightwave Technology, 2013, 31, 1247-1254.	2.7	32

#	Article	IF	CITATIONS
37	Radiation effects on optical frequency domain reflectometry fiber-based sensor. Optics Letters, 2015, 40, 4571.	1.7	30
38	Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study. Optical Materials Express, 2015, 5, 1054.	1.6	29
39	Assessment of Ge-doped optical fibre as a TL-mode detector. Journal of Non-Crystalline Solids, 2013, 360, 9-12.	1.5	28
40	X-ray irradiation effects on fluorine-doped germanosilicate optical fibers. Optical Materials Express, 2014, 4, 1683.	1.6	28
41	Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers. IEEE Transactions on Nuclear Science, 2016, 63, 2058-2064.	1.2	27
42	Optimized radiation-hardened erbium doped fiber amplifiers for long space missions. Journal of Applied Physics, 2017, 121, .	1.1	27
43	Radiation-Hardened Fiber Bragg Grating Based Sensors for Harsh Environments. IEEE Transactions on Nuclear Science, 2017, 64, 68-73.	1.2	27
44	Spatial distribution of the red luminescence in pristine, Î ³ rays and ultraviolet-irradiated multimode optical fibers. Applied Physics Letters, 2004, 84, 4215-4217.	1.5	26
45	Cerium-activated sol–gel silica glasses for radiation dosimetry in harsh environment. Materials Research Express, 2016, 3, 046201.	0.8	26
46	Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments. IEEE Transactions on Nuclear Science, 2017, 64, 45-53.	1.2	26
47	Total Ionizing Dose Effects on a Radiation-Hardened CMOS Image Sensor Demonstrator for ITER Remote Handling. IEEE Transactions on Nuclear Science, 2018, 65, 101-110.	1.2	26
48	Transient radiation-induced effects on solid core microstructured optical fibers. Optics Express, 2011, 19, 21760.	1.7	25
49	Optimization of the Design of High Power <formula formulatype="inline"><tex Notation="TeX"> \$hbox{Er}^{3+}/hbox{Yb}^{3+}\$</tex </formula> -Codoped Fiber Amplifiers for Space Missions by Means of Particle Swarm Approach. IEEE Journal of Selected Topics in Ouantum Electronics, 2014, 20, 484-491.	1.9	23
50	Coupled Theoretical and Experimental Studies for the Radiation Hardening of Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2014, 61, 1819-1825.	1.2	23
51	Transient and Steady State Radiation Responses of Solarization-Resistant Optical Fibers. IEEE Transactions on Nuclear Science, 2010, 57, 2049-2055.	1.2	22
52	Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments. Journal of Lightwave Technology, 2015, 33, 2646-2651.	2.7	22
53	Sol–gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry. Optical Materials, 2016, 51, 104-109.	1.7	22
54	X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions. Journal of Non-Crystalline Solids, 2011, 357, 1966-1970.	1.5	21

#	Article	IF	CITATIONS
55	Integration of Optical Fibers in Megajoule Class Laser Environments: Advantages and Limitations. IEEE Transactions on Nuclear Science, 2012, 59, 1317-1322.	1.2	21
56	Neutron Irradiation Effects on the Structural Properties of KU1, KS-4V and I301 Silica Glasses. IEEE Transactions on Nuclear Science, 2014, 61, 1522-1530.	1.2	21
57	Influence of the drawing process on the defect generation in multistep-index germanium-doped optical fibers. Optics Letters, 2009, 34, 2282.	1.7	20
58	Potential of Copper- and Cerium-Doped Optical Fiber Materials for Proton Beam Monitoring. IEEE Transactions on Nuclear Science, 2017, 64, 567-573.	1.2	20
59	Radioluminescence and Optically Stimulated Luminescence Responses of a Cerium-Doped Sol-Gel Silica Glass Under X-Ray Beam Irradiation. IEEE Transactions on Nuclear Science, 2018, 65, 1591-1597.	1.2	20
60	Growth and Decay Kinetics of Radiation-Induced Attenuation in Bulk Optical Materials. IEEE Transactions on Nuclear Science, 2018, 65, 1612-1618.	1.2	20
61	Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2. Journal of Non-Crystalline Solids, 2009, 355, 1089-1091.	1.5	19
62	Origin of the visible absorption in radiation-resistant optical fibers. Optical Materials Express, 2013, 3, 1769.	1.6	19
63	Effects of Radiation and Hydrogen-Loading on the Performances of Raman-Distributed Temperature Fiber Sensors. Journal of Lightwave Technology, 2015, 33, 2432-2438.	2.7	19
64	Core Versus Cladding Effects of Proton Irradiation on Erbium-Doped Optical Fiber: Micro-Luminescence Study. IEEE Transactions on Nuclear Science, 2008, 55, 2223-2228.	1.2	18
65	Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories. Journal of Sensors, 2012, 2012, 1-9.	0.6	18
66	Influence of photo-inscription conditions on the radiation-response of fiber Bragg gratings. Optics Express, 2015, 23, 8659.	1.7	18
67	X-rays, Î ³ -rays, electrons and protons radiation-induced changes on the lifetimes of Er 3+ and Yb 3+ ions in silica-based optical fibers. Journal of Luminescence, 2018, 195, 402-407.	1.5	18
68	Dosimetry Mapping of Mixed-Field Radiation Environment Through Combined Distributed Optical Fiber Sensing and FLUKA Simulation. IEEE Transactions on Nuclear Science, 2019, 66, 299-305.	1.2	18
69	Influence of the Manufacturing Process on the Radiation Sensitivity of Fluorine-Doped Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2012, 59, 760-766.	1.2	17
70	Proton Irradiation Response of Hole-Assisted Carbon Coated Erbium-Doped Fiber Amplifiers. IEEE Transactions on Nuclear Science, 2014, 61, 3309-3314.	1.2	17
71	Influence of <formula formulatype="inline"><tex Notation="TeX">\${hbox{0}}_2\$</tex </formula> -Loading Pretreatment on the Radiation Response of Pure and Fluorine-Doped Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2014. 61. 3302-3308.	1.2	17
72	Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers. Journal of Applied Physics, 2015, 118, .	1.1	17

#	Article	IF	CITATIONS
73	Multi-MGy Radiation Hard CMOS Image Sensor: Design, Characterization and X/Gamma Rays Total Ionizing Dose Tests. IEEE Transactions on Nuclear Science, 2015, 62, 2956-2964.	1.2	17
74	Study of Fiber Bragg Grating Samples Exposed to High Fast Neutron Fluences. IEEE Transactions on Nuclear Science, 2018, 65, 2494-2501.	1.2	17
75	Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation. Journal of Applied Physics, 2020, 128, .	1.1	17
76	Extreme Radiation Sensitivity of Ultra-Low Loss Pure-Silica-Core Optical Fibers at Low Dose Levels and Infrared Wavelengths. Sensors, 2020, 20, 7254.	2.1	17
77	-radiation-induced attenuation in photonic crystal fibre. Electronics Letters, 2002, 38, 1169.	0.5	16
78	Radiation-Induced Attenuation in Single-Mode Phosphosilicate Optical Fibers for Radiation Detection. IEEE Transactions on Nuclear Science, 2018, 65, 126-131.	1.2	16
79	Combined Temperature and Radiation Effects on Radiation-Sensitive Single-Mode Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1643-1649.	1.2	16
80	Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors. IEEE Transactions on Nuclear Science, 2015, 62, 2988-2994.	1.2	15
81	Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors. IEEE Transactions on Nuclear Science, 2016, 63, 1688-1693.	1.2	15
82	Radiation Hardness Comparison of CMOS Image Sensor Technologies at High Total Ionizing Dose Levels. IEEE Transactions on Nuclear Science, 2019, 66, 111-119.	1.2	15
83	Influence of \${m Ce}^{3+}\$ Codoping on the Photoluminescence Excitation Channels of Phosphosilicate Yb/Er-Doped Glasses. IEEE Photonics Technology Letters, 2012, 24, 509-511.	1.3	14
84	Effects of densification atmosphere on optical properties of ionic copper-activated sol–gel silica glass: towards an efficient radiation dosimeter. Materials Research Express, 2014, 1, 026203.	0.8	14
85	Gamma Radiation Tests of Radiation-Hardened Fiber Bragg Grating-Based Sensors for Radiation Environments. IEEE Transactions on Nuclear Science, 2017, 64, 2307-2311.	1.2	14
86	Steady-State Radiation-Induced Effects on the Performances of BOTDA and BOTDR Optical Fiber Sensors. IEEE Transactions on Nuclear Science, 2018, 65, 111-118.	1.2	14
87	Radiation Effects in CMOS Isolation Oxides: Differences and Similarities With Thermal Oxides. IEEE Transactions on Nuclear Science, 2013, 60, 2623-2629.	1.2	13
88	Raman measurements in silica glasses irradiated with energetic ions. AIP Conference Proceedings, 2014, , .	0.3	13
89	Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorousâ€Doped Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800553.	0.8	13
90	On-site Regeneration Technique for Hole-Assisted Optical Fibers Used In Nuclear Facilities. IEEE Transactions on Nuclear Science, 2015, 62, 2941-2947.	1.2	12

#	Article	IF	CITATIONS
91	Investigation of Coating Impact on OFDR Optical Remote Fiber-Based Sensors Performances for Their Integration in High Temperature and Radiation Environments. Journal of Lightwave Technology, 2016, 34, 4460-4465.	2.7	12
92	On-Line Characterization of Gamma Radiation Effects on Single-Ended Raman Based Distributed Fiber Optic Sensor. IEEE Transactions on Nuclear Science, 2016, 63, 2051-2057.	1.2	12
93	Radiation Hardened Architecture of a Single-Ended Raman-Based Distributed Temperature Sensor. IEEE Transactions on Nuclear Science, 2017, 64, 54-60.	1.2	12
94	X-Ray, Proton, and Electron Radiation Effects on Type I Fiber Bragg Gratings. IEEE Transactions on Nuclear Science, 2018, 65, 1632-1638.	1.2	12
95	Temperature-Dependent Modeling of Cladding-Pumped <inline-formula> <tex-math notation="LaTeX"> \$ext{Er}^{3+}\$</tex-math> </inline-formula> / <inline-formula> <tex-math notation="LaTeX">\$ext{Yb}^{3+}\$ </tex-math </inline-formula> -Codoped Fiber Amplifiers for Space Applications, lournal of Lightwave Technology, 2018, 36, 3594-3602.	2.7	12
96	Radiation Resistant Single-Mode Fiber With Different Coatings for Sensing in High Dose Environments. IEEE Transactions on Nuclear Science, 2019, 66, 1657-1662.	1.2	12
97	Infrared radiation Induced attenuation of radiation sensitive optical fibers: influence of temperature and modal propagation. Optical Fiber Technology, 2020, 55, 102166.	1.4	12
98	Operating Temperature Range of Phosphorous-Doped Optical Fiber Dosimeters Exploiting Infrared Radiation-Induced Attenuation. IEEE Transactions on Nuclear Science, 2021, 68, 906-912.	1.2	12
99	The Opposite Effects of the Heating Rate on the TSL Sensitivity of Ge-doped Fiber and TLD500 Dosimeters. IEEE Transactions on Nuclear Science, 2014, 61, 3485-3490.	1.2	11
100	Evaluation of Distributed OFDR-Based Sensing Performance in Mixed Neutron/Gamma Radiation Environments. IEEE Transactions on Nuclear Science, 2017, 64, 61-67.	1.2	11
101	Vulnerability and Hardening Studies of Optical and Illumination Systems at MGy Dose Levels. IEEE Transactions on Nuclear Science, 2018, 65, 132-140.	1.2	11
102	Radiation Effects on Type I Fiber Bragg Gratings: Influence of Recoating and Irradiation Conditions. Journal of Lightwave Technology, 2018, 36, 998-1004.	2.7	11
103	Radiation Effects on Aluminosilicate Optical Fibers: Spectral Investigations From the Ultraviolet to Nearâ€Infrared Domains. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800485.	0.8	11
104	X-Rays, <inline-formula> <tex-math notation="LaTeX">\$gamma\$ </tex-math> </inline-formula> -Rays, and Proton Beam Monitoring With Multimode Nitrogen-Doped Optical Fiber. IEEE Transactions on Nuclear Science, 2019, 66, 306-311.	1.2	11
105	Spectroscopic Study of \$gamma\$-Ray and Pulsed X-Ray Radiation-Induced Point Defects in Pure-Silica-Core Optical Fibers. IEEE Transactions on Nuclear Science, 2007, 54, 1136-1142.	1.2	10
106	Global View on Dose Rate Effects in Silica-Based Fibers and Devices Damaged by Radiation-Induced Carrier Trapping. IEEE Transactions on Nuclear Science, 2013, 60, 4341-4348.	1.2	10
107	Effects of ionizing radiations on the optical properties of ionic copper-activated sol-gel silica glasses. Optical Materials, 2018, 75, 116-121.	1.7	10
108	Performances of Radiation-Hardened Single-Ended Raman Distributed Temperature Sensors Using Commercially Available Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 305-311.	1.2	10

#	Article	IF	CITATIONS
109	Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups. Applied Sciences (Switzerland), 2021, 11, 2991.	1.3	10
110	Investigation of the Incorporation of Cerium lons in MCVD-Silica Glass Preforms for Remote Optical Fiber Radiation Dosimetry. Sensors, 2021, 21, 3362.	2.1	10
111	Dependence of the Voids-Fiber Bragg Grating Radiation Response on Temperature, Dose, and Dose Rate. IEEE Transactions on Nuclear Science, 2018, 65, 1619-1623.	1.2	9
112	Atmospheric Neutron Monitoring through Optical Fiber-Based Sensing. Sensors, 2020, 20, 4510.	2.1	9
113	Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers. IEEE Transactions on Nuclear Science, 2020, 67, 1650-1657.	1.2	9
114	Photobleaching Effect on Infrared Radiation-Induced Attenuation of Germanosilicate Optical Fibers at MGy Dose Levels. IEEE Transactions on Nuclear Science, 2021, 68, 1688-1693.	1.2	9
115	Coupled temperature and \hat{I}^3 -radiation effect on silica-based optical fiber strain sensors based on Rayleigh and Brillouin scatterings. Optics Express, 2019, 27, 21608.	1.7	9
116	Gd ³⁺ -doped sol-gel silica glass for remote ionizing radiation dosimetry. OSA Continuum, 2019, 2, 715.	1.8	9
117	Temperature Dependence of Low-Dose Radiation-Induced Attenuation of Germanium-Doped Optical Fiber at Infrared Wavelengths. IEEE Transactions on Nuclear Science, 2022, 69, 512-517.	1.2	9
118	Dose Rate Effect Comparison on the Radiation Response of Type I Fiber Bragg Gratings Written With UV cw Laser. IEEE Transactions on Nuclear Science, 2016, 63, 2046-2050.	1.2	8
119	6-MeV Electron Exposure Effects on OFDR-Based Distributed Fiber-Based Sensors. IEEE Transactions on Nuclear Science, 2018, 65, 1598-1603.	1.2	8
120	Radiation and High Temperature Effects on Regenerated Fiber Bragg Grating. Journal of Lightwave Technology, 2019, 37, 4763-4769.	2.7	8
121	Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry. Materials, 2020, 13, 2611.	1.3	8
122	Remote Measurements of X-Rays Dose Rate Using a Cerium-Doped Air-Clad Optical Fiber. IEEE Transactions on Nuclear Science, 2020, 67, 1658-1662.	1.2	8
123	Nearâ€IR Radiationâ€Induced Attenuation of Aluminosilicate Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000807.	0.8	8
124	Temperature Influence on the Radiation Responses of Erbiumâ€Doped Fiber Amplifiers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100002.	0.8	8
125	Combined Temperature and Radiation Effects on the Gain of Er- and Er–Yb-Doped Fiber Amplifiers. IEEE Transactions on Nuclear Science, 2021, 68, 793-800.	1.2	8
126	Cathodoluminescence investigation of Ge-point defects in silica-based optical fibers. Journal of Luminescence, 2016, 179, 1-7.	1.5	7

#	Article	IF	CITATIONS
127	Optical Frequency Domain Reflectometer Distributed Sensing Using Microstructured Pure Silica Optical Fibers Under Radiations. IEEE Transactions on Nuclear Science, 2016, 63, 2038-2045.	1.2	7
128	v-P2O5 micro-clustering in P-doped silica studied by a first-principles Raman investigation. Scientific Reports, 2019, 9, 7126.	1.6	7
129	Pulsed Xâ€Ray Radiation Responses of Solarizationâ€Resistant Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800487.	0.8	7
130	Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H ₂ Loading. IEEE Transactions on Nuclear Science, 2020, 67, 289-295.	1.2	7
131	Optical responses of a copper-activated sol-gel silica glass under low-dose and low-dose rate X-ray exposures. OSA Continuum, 2019, 2, 563.	1.8	7
132	Cathodoluminescence Characterization of Point Defects in Optical Fibers. IEEE Transactions on Nuclear Science, 2016, , 1-1.	1.2	6
133	Distributed Optical Fiber Sensor Allowing Temperature and Strain Discrimination in Radiation Environments. IEEE Transactions on Nuclear Science, 2019, 66, 1651-1656.	1.2	6
134	Photobleaching Effect on the Radiationâ€Induced Attenuation of an Ultralow Loss Optical Fiber at Telecommunication Wavelengths. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100518.	0.8	6
135	Optical Fiber-Based Monitoring of X-ray Pulse Series from a Linear Accelerator. Radiation, 2022, 2, 17-32.	0.6	6
136	Monitoring of Ultra-High Dose Rate Pulsed X-ray Facilities with Radioluminescent Nitrogen-Doped Optical Fiber. Sensors, 2022, 22, 3192.	2.1	6
137	Evidence of different red emissions in irradiated germanosilicate materials. Journal of Luminescence, 2016, 177, 127-132.	1.5	5
138	Validity of the McCumber Theory at High Temperatures in Erbium and Ytterbium-Doped Aluminosilicate Fibers. IEEE Journal of Quantum Electronics, 2018, 54, 1-7.	1.0	5
139	Theoretical Investigation of Thermal Effects in High Power Er 3+ /Yb 3+ ―Codoped Doubleâ€Clad Fiber Amplifiers for Space Applications. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800582.	0.8	5
140	Radiation-Response of Fiber Bragg Gratings at Low Temperatures. IEEE Transactions on Nuclear Science, 2020, 67, 1637-1642.	1.2	5
141	Temperature Effect on the Radioluminescence of Cu-, Ce-, and CuCe-Doped Silica-Based Fiber Materials. IEEE Transactions on Nuclear Science, 2021, 68, 1782-1787.	1.2	5
142	Radiation-hardened fiber Bragg gratings for space missions. , 2016, , .		5
143	Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams. Sensors, 2021, 21, 7523.	2.1	5
144	Combined Experimental and Simulation Study of the Fiber Composition Effects on Its Brillouin Scattering Signature. Journal of Lightwave Technology, 2019, 37, 4619-4624.	2.7	4

#	Article	IF	CITATIONS
145	Regeneration of Fiber Bragg Gratings and Their Responses Under X-Rays. IEEE Transactions on Nuclear Science, 2021, 68, 1681-1687.	1.2	4
146	All-Fiber Magneto-Optical Effect Using Nanoparticles Doped Sol-Gel Thin Film Deposited Within Microstructured Fibers. Journal of Lightwave Technology, 2021, 39, 5604-5610.	2.7	4
147	In-situ regeneration of P-doped optical fiber dosimeter. Optics Letters, 2020, 45, 5201.	1.7	4
148	Temperature Dependence of Radiation Induced Attenuation of Aluminosilicate Optical Fiber. IEEE Transactions on Nuclear Science, 2022, 69, 1515-1520.	1.2	4
149	Irradiation temperature influence on the in-situ measured radiation induced attenuation of Ge-doped fibers. IEEE Transactions on Nuclear Science, 2016, , 1-1.	1.2	3
150	Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers. Journal of Materials Science, 2017, 52, 10697-10708.	1.7	3
151	Radiation-Induced Effects on Fiber Bragg Gratings Inscribed in Highly Birefringent Photonic Crystal Fiber. IEEE Transactions on Nuclear Science, 2019, 66, 120-124.	1.2	3
152	Regenerated Fiber Bragg Gratings under High Temperature and Radiations. , 2018, , .		3
153	Optical fibers under irradiation: quantitative assessment of the energy distribution of radiation-induced trapped states. , 2020, , .		3
154	Pulsed Xâ€Ray Radiation Response of Ultralow Loss Pureâ€6ilicaâ€Core Optical Fibers. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100519.	0.8	3
155	X-Ray Radioluminescence in Diversely Doped Multimode Silica-Based Optical Fibers. IEEE Transactions on Nuclear Science, 2022, 69, 1625-1632.	1.2	3
156	Toward Confocal Chromatic Sensing in Nuclear Reactors: <i>In Situ</i> Optical Refractive Index Measurements of Bulk Glass. IEEE Transactions on Nuclear Science, 2022, 69, 722-730.	1.2	3
157	Radiation vulnerability of standard and radiation-hardened optical glasses at MGy dose: Towards the design of tolerant optical systems. Journal of Non-Crystalline Solids, 2022, 585, 121531.	1.5	3
158	Brillouin scattering based sensor in high gamma dose environment: design and optimization of optical fiber for long-term distributed measurement. Proceedings of SPIE, 2012, , .	0.8	2
159	Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy. , 2017, , .		2
160	Influence of Selfâ€Trapped Holes on the Responses of Fluorineâ€Doped Multimode Optical Fibers Exposed to Low Fluences of Protons. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800547.	0.8	2
161	Radiation Effects on WDM and DWDM Architectures of Preamplifier and Boost-Amplifier. IEEE Transactions on Nuclear Science, 2020, 67, 278-283.	1.2	2
162	Radiation Response of Distributed Feedback Bragg Gratings for Space Applications. IEEE Transactions on Nuclear Science, 2020, 67, 284-288.	1.2	2

#	Article	IF	CITATIONS
163	Distributed and discrete hydrogen monitoring through optical fiber sensors based on optical frequency domain reflectometry. JPhys Photonics, 2020, 2, 014009.	2.2	2
164	Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000802.	0.8	2
165	Distributed Temperature and Strain Fiber-Based Sensing in Radiation Environment. IEEE Transactions on Nuclear Science, 2021, 68, 1675-1680.	1.2	2
166	Implementation of Optical Fiber based Dosimetry at CERN. , 2018, , .		2
167	Combined Radiations and Temperature Effects on FBGs Photo-inscribed by Femtosecond Laser in Radiation-Hardened Optical Fibers. , 2018, , .		2
168	Investigations of the MGy dose level radiation effects on the photometric budget of a radiation-hardened CMOS-based camera. Applied Optics, 2019, 58, 6165.	0.9	2
169	Integration of optical fibers in radiative environments: Advantages and limitations. , 2011, , .		1
170	Annealing Effects on Radiation-Hardened CMOS Image Sensors Exposed to Ultrahigh Total Ionizing Doses. IEEE Transactions on Nuclear Science, 2020, 67, 1284-1292.	1.2	1
171	Investigation by Thermoluminescence of the Ionization and Annealing Processes in Irradiated Ge-Doped Silica Fiber Preform. IEEE Transactions on Nuclear Science, 2021, 68, 1556-1564.	1.2	1
172	Structural and optical changes in silica-based optical fibers exposed to high neutron and gamma fluences. Journal of Non-Crystalline Solids, 2021, 574, 121150.	1.5	1
173	Potential performance loss and compensation techniques of a lens under ionizing radiations. , 2018, , .		1
174	Recent Advances on Radiation-Hardened Optical Fiber Technologies. , 2020, , .		1
175	Coupled radiation and temperature effects on Erbium-doped fiber amplifiers. , 2020, , .		1
176	Combined effect of radiation and temperature: towards optical fibers suited to distributed sensing in extreme radiation environments. , 2019, , .		1
177	Photocycle of point defects in highly- and weakly-germanium doped silica revealed by transient absorption measurements with femtosecond tunable pump. Scientific Reports, 2022, 12, .	1.6	1
178	Ni-Ion and \$gamma\$ -Ray Irradiated Silica-Based Glasses Characterized by Luminescence and Raman Spectroscopies. IEEE Transactions on Nuclear Science, 2018, 65, 1604-1611.	1.2	0
179	Statistical analysis of the 800 nm fs-laser inscription conditions on the characteristics and thermal stability of FBGs inscribed in fluorine-doped optical fibers. , 2018, , .		0
180	Recent Advances in Radiation-Hardened Fiber-Optic Amplifiers for Space-based Laser Communications. , 2021, , .		0

#	Article	IF	CITATIONS
181	Optimization of single-mode optical fibers for strain and temperature discrimination through Brillouin sensing. , 2021, , .		0
182	Optimization of the Radiation Response of Backup Optical Fiber Amplifiers for Space Missions. IEEE Transactions on Nuclear Science, 2022, 69, 1500-1505.	1.2	0
183	<i>In Situ</i> Optical Characterization of Bulk Optical Glasses Under Protons and X-Rays. IEEE Transactions on Nuclear Science, 2022, 69, 1492-1499.	1.2	Ο
184	O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation. Applied Sciences (Switzerland), 2022, 12, 3916.	1.3	0
185	X-ray irradiation response of antireflection coatings. , 2019, , .		0