
## Chang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087304/publications.pdf Version: 2024-02-01



CHANC HE

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.                                                                                     | 11.1 | 1,407     |
| 2  | Singleâ€Junction Organic Photovoltaic Cell with 19% Efficiency. Advanced Materials, 2021, 33, e2102420.                                                                                                  | 11.1 | 1,072     |
| 3  | Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS <sub>2</sub><br>Nanocrystals. Chemistry of Materials, 2008, 20, 6434-6443.                                           | 3.2  | 519       |
| 4  | Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a<br>Fullerene-Free Tandem Organic Solar Cell. Journal of the American Chemical Society, 2017, 139,<br>7302-7309. | 6.6  | 427       |
| 5  | Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in<br>Ternary Polymer Solar Cells. Advanced Materials, 2019, 31, e1902302.                                     | 11.1 | 364       |
| 6  | New Wide Band Gap Donor for Efficient Fullerene-Free All-Small-Molecule Organic Solar Cells.<br>Journal of the American Chemical Society, 2017, 139, 1958-1966.                                          | 6.6  | 260       |
| 7  | Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene<br>Central Unit and Indenedione End Groups. Chemistry of Materials, 2013, 25, 2274-2281.                    | 3.2  | 180       |
| 8  | Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy and Environmental Science, 2017, 10, 546-551.                                            | 15.6 | 180       |
| 9  | Environmentally Friendly Solventâ€Processed Organic Solar Cells that are Highly Efficient and<br>Adaptable for the Bladeâ€Coating Method. Advanced Materials, 2018, 30, 1704837.                         | 11.1 | 173       |
| 10 | Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. Journal of Materials Chemistry, 2008, 18, 4085.                                       | 6.7  | 160       |
| 11 | Solution-Processable Star-Shaped Molecules with Triphenylamine Core and Dicyanovinyl Endgroups<br>for Organic Solar Cellsâ€. Chemistry of Materials, 2011, 23, 817-822.                                  | 3.2  | 158       |
| 12 | Modulating Molecular Orientation Enables Efficient Nonfullerene Small-Molecule Organic Solar<br>Cells. Chemistry of Materials, 2018, 30, 2129-2134.                                                      | 3.2  | 157       |
| 13 | 15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution.<br>Science China Materials, 2020, 63, 1142-1150.                                                       | 3.5  | 140       |
| 14 | Solution-Processable Star-Shaped Photovoltaic Organic Molecule with Triphenylamine Core and<br>Benzothiadiazoleâ^'Thiophene Arms. Macromolecules, 2009, 42, 7619-7622.                                   | 2.2  | 129       |
| 15 | 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.               | 15.6 | 116       |
| 16 | Binaphthylâ€Containing Green―and Redâ€Emitting Molecules for Solutionâ€Processable Organic<br>Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3299-3306.                                | 7.8  | 108       |
| 17 | Solution-Processable Organic Molecule with Triphenylamine Core and Two<br>Benzothiadiazole-Thiophene Arms for Photovoltaic Application. Journal of Physical Chemistry C, 2010,<br>114, 3701-3706.        | 1.5  | 97        |
| 18 | Improved Domain Size and Purity Enables Efficient All‣mallâ€Molecule Ternary Solar Cells. Advanced<br>Materials, 2017, 29, 1703777.                                                                      | 11.1 | 94        |

CHANG HE

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metal-organic frameworks bonded with metal <i>N</i> -heterocyclic carbenes for efficient catalysis.<br>National Science Review, 2022, 9, .                                                                                 | 4.6  | 92        |
| 20 | Synthesis and photovoltaic properties of a star-shaped molecule with triphenylamine as core and benzo[1,2,5]thiadiazol vinylene as arms. Solar Energy Materials and Solar Cells, 2009, 93, 108-113.                        | 3.0  | 89        |
| 21 | The Crucial Role of Chlorinated Thiophene Orientation in Conjugated Polymers for Photovoltaic Devices. Angewandte Chemie - International Edition, 2018, 57, 12911-12915.                                                   | 7.2  | 87        |
| 22 | Effects of energy-level offset between a donor and acceptor on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18889-18897.                                  | 5.2  | 87        |
| 23 | Effects of Shortened Alkyl Chains on Solutionâ€Processable Small Molecules with Oxoâ€Alkylated Nitrile<br>Endâ€Capped Acceptors for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2014, 4,<br>1400538. | 10.2 | 79        |
| 24 | Organic solar cells based on the spin-coated blend films of TPA-th-TPA and PCBM. Solar Energy<br>Materials and Solar Cells, 2006, 90, 1815-1827.                                                                           | 3.0  | 73        |
| 25 | Effect of side-chain end groups on the optical, electrochemical, and photovoltaic properties of side-chain conjugated polythiophenes. Journal of Polymer Science Part A, 2006, 44, 4916-4922.                              | 2.5  | 70        |
| 26 | Alternating copolymers of electronâ€rich arylamine and electronâ€deficient 2,1,3â€benzothiadiazole:<br>Synthesis, characterization and photovoltaic properties. Journal of Polymer Science Part A, 2007, 45,<br>3861-3871. | 2.5  | 66        |
| 27 | Correlations among Chemical Structure, Backbone Conformation, and Morphology in Two Highly<br>Efficient Photovoltaic Polymer Materials. Macromolecules, 2016, 49, 120-126.                                                 | 2.2  | 59        |
| 28 | Synthesis and photovoltaic properties of two-dimension-conjugated D–A copolymers based on<br>benzodithiophene or benzodifuran units. Polymer Chemistry, 2013, 4, 1474-1481.                                                | 1.9  | 55        |
| 29 | Multifunctional Gold Nanoparticles@Imidazolium-Based Cationic Covalent Triazine Frameworks for Efficient Tandem Reactions. CCS Chemistry, 2021, 3, 2368-2380.                                                              | 4.6  | 55        |
| 30 | Triphenylamine-containing D–A–D molecules with (dicyanomethylene)pyran as an acceptor unit for<br>bulk-heterojunction organic solar cells. Journal of Materials Chemistry, 2011, 21, 3768.                                 | 6.7  | 53        |
| 31 | Triphenylamine-containing linear D-A-D molecules with benzothiadiazole as acceptor unit for bulk-heterojunction organic solar cells. Organic Electronics, 2011, 12, 614-622.                                               | 1.4  | 53        |
| 32 | Tunable Electron Donating and Accepting Properties Achieved by Modulating the Steric Hindrance of<br>Side Chains in A-D-A Small-Molecule Photovoltaic Materials. Chemistry of Materials, 2018, 30, 619-628.                | 3.2  | 49        |
| 33 | Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid. Journal of Applied Polymer Science, 2003, 87, 1537-1540.                                                              | 1.3  | 45        |
| 34 | Poly(alkylthio-p-phenylenevinylene): Synthesis and electroluminescent and photovoltaic properties.<br>Journal of Polymer Science Part A, 2006, 44, 1279-1290.                                                              | 2.5  | 40        |
| 35 | Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation<br>Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells. Chemistry of Materials, 2020, 32,<br>1993-2003.               | 3.2  | 36        |
| 36 | Solution-processable star-shaped photovoltaic organic molecule with triphenylamine core and thieno[3,2-b]thiophene–dicyanovinyl arms. Organic Electronics, 2012, 13, 2546-2552.                                            | 1.4  | 35        |

CHANG HE

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Science China Materials, 2017, 60, 697-706.                                      | 3.5 | 33        |
| 38 | lmidazoliumâ€Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles<br>for Enhanced CO <sub>2</sub> Electroreduction. ChemCatChem, 2020, 12, 3530-3536.                               | 1.8 | 31        |
| 39 | Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell<br>modules. Journal of Materials Chemistry C, 2019, 7, 3206-3211.                                                      | 2.7 | 27        |
| 40 | Phenanthro[1,10,9,8-cdefg]carbazole-containing copolymer for high performance thin-film transistors and polymer solar cells. Journal of Materials Chemistry, 2012, 22, 3696.                                        | 6.7 | 26        |
| 41 | Solution-processable star-shaped photovoltaic organic molecules based on triphenylamine and benzothiadiazole with longer pi-bridge. Organic Electronics, 2012, 13, 166-172.                                         | 1.4 | 26        |
| 42 | Electroluminescent and Photovoltaic Properties of the Crosslinkable Poly(phenylene vinylene)<br>Derivative with Side Chains Containing Vinyl Groups. Macromolecular Chemistry and Physics, 2005,<br>206, 1311-1318. | 1.1 | 24        |
| 43 | Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron<br>Acceptors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1202-1210.                             | 2.2 | 24        |
| 44 | Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. Journal of Materials Chemistry A, 2017, 5, 10416-10423.                                      | 5.2 | 23        |
| 45 | Influence of the replacement of alkoxyl with alkylthienyl on photovoltaic properties of two small molecule donors for organic solar cells. Science China Chemistry, 2017, 60, 1340-1348.                            | 4.2 | 23        |
| 46 | A mesoporous cationic metal–organic framework with a high density of positive charge for enhanced removal of dichromate from water. Dalton Transactions, 2019, 48, 6680-6684.                                       | 1.6 | 23        |
| 47 | Solution-processed small molecules based on indacenodithiophene for high performance thin-film transistors and organic solar cells. Organic Electronics, 2014, 15, 1155-1165.                                       | 1.4 | 22        |
| 48 | Optimization of active layer morphology by small-molecule donor design enables over 15% efficiency<br>in small-molecule organic solar cells. Journal of Materials Chemistry A, 2021, 9, 13653-13660.                | 5.2 | 21        |
| 49 | Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells. Science China Chemistry, 2021, 64, 1200-1207.                                                          | 4.2 | 20        |
| 50 | Improving the performance of polymer solar cells by altering polymer side chains and optimizing film morphologies. Organic Electronics, 2012, 13, 3234-3243.                                                        | 1.4 | 19        |
| 51 | Effect of molecular spatial configuration on the photovoltaic properties of<br>triphenylamine-containing D–A structured organic molecules. Journal Physics D: Applied Physics, 2011,<br>44, 475101.                 | 1.3 | 17        |
| 52 | Red-emission organic light-emitting diodes based on solution-processable molecules with<br>triphenylamine core and benzothiadiazole-thiophene arms. Science China Chemistry, 2011, 54, 695-698.                     | 4.2 | 17        |
| 53 | Effect of additives on the photovoltaic properties of organic solar cells based on<br>triphenylamine-containing amorphous molecules. Science China Chemistry, 2014, 57, 966-972.                                    | 4.2 | 15        |
| 54 | Control of Donor–Acceptor Photophysics through Structural Modification of a "Twisting―<br>Push–Pull Molecule. Chemistry of Materials, 2019, 31, 6860-6869.                                                          | 3.2 | 15        |

CHANG HE

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Science China Chemistry, 2013, 56, 997-1003.                                                  | 4.2 | 14        |
| 56 | Inorganic Molecular Clusters with Facile Preparation and Neutral pH for Efficient Hole Extraction in Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 39462-39470.                                               | 4.0 | 14        |
| 57 | Thinner-film plastic photovoltaic cells based on different C60 derivatives. Polymers for Advanced Technologies, 2006, 17, 500-505.                                                                                                 | 1.6 | 11        |
| 58 | Synthesis of ladderâ€like polynorbornenes with nâ€type perylenendiimide derivatives as bridges. Journal<br>of Polymer Science Part A, 2012, 50, 1333-1341.                                                                         | 2.5 | 8         |
| 59 | The Importance of End Groups for Solutionâ€Processed Smallâ€Molecule Bulkâ€Heterojunction<br>Photovoltaic Cells. ChemSusChem, 2016, 9, 973-980.                                                                                    | 3.6 | 8         |
| 60 | The Crucial Role of Chlorinated Thiophene Orientation in Conjugated Polymers for Photovoltaic Devices. Angewandte Chemie, 2018, 130, 13093-13097.                                                                                  | 1.6 | 8         |
| 61 | Surface modification and shape adjustment of polymer semiconductor nanowires. Journal of Materials Chemistry, 2011, 21, 9626.                                                                                                      | 6.7 | 7         |
| 62 | D-A-D structured organic molecules with diketopyrrolopyrrole acceptor unit for solution-processed organic solar cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130009. | 1.6 | 6         |
| 63 | Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy. Science China Chemistry, 2021, 64, 1569-1576.                                                                   | 4.2 | 2         |
| 64 | Terminal alkyl chain tuning of small molecule donor enables optimized morphology and efficient all-small-molecule organic solar cells. Dyes and Pigments, 2022, 200, 110147.                                                       | 2.0 | 1         |
| 65 | Optimized molecular orientation and domain size enables efficient non-fullerene small-molecule organic solar cells. , 0, , .                                                                                                       |     | Ο         |
| 66 | Optimized Charge Transport Channel Enables Thick-Film All-Small-Molecule Organic Solar Cells.<br>Energy & Fuels, 2021, 35, 19756-19764.                                                                                            | 2.5 | 0         |