
Erik G Marklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7087284/publications.pdf Version: 2024-02-01

FDIR C. MADRILIND

#	Article	IF	CITATIONS
1	Bayesian Deconvolution of Mass and Ion Mobility Spectra: From Binary Interactions to Polydisperse Ensembles. Analytical Chemistry, 2015, 87, 4370-4376.	3.2	663
2	Quantitative mass imaging of single biological macromolecules. Science, 2018, 360, 423-427.	6.0	453
3	The <i>lac</i> Repressor Displays Facilitated Diffusion in Living Cells. Science, 2012, 336, 1595-1598.	6.0	361
4	Fundamentals of ion mobility spectrometry. Current Opinion in Chemical Biology, 2018, 42, 51-59.	2.8	270
5	Collision Cross Sections for Structural Proteomics. Structure, 2015, 23, 791-799.	1.6	231
6	Single Particle X-ray Diffractive Imaging. Nano Letters, 2008, 8, 310-316.	4.5	229
7	Protein Structures under Electrospray Conditions. Biochemistry, 2007, 46, 933-945.	1.2	120
8	High-throughput gene expression analysis at the level of single proteins using a microfluidic turbidostat and automated cell tracking. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120025.	1.8	85
9	Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19796-19801.	3.3	79
10	Proteins, Lipids, and Water in the Gas Phase. Macromolecular Bioscience, 2011, 11, 50-59.	2.1	77
11	A hydrophobic ratchet entrenches molecular complexes. Nature, 2020, 588, 503-508.	13.7	75
12	Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nature Communications, 2017, 8, 13993.	5.8	68
13	Structural stability of electrosprayed proteins: temperature and hydration effects. Physical Chemistry Chemical Physics, 2009, 11, 8069.	1.3	57
14	Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science, 2018, 359, 930-935.	6.0	51
15	Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhysics Letters, 2009, 85, 18005.	0.7	34
16	A Hydrodynamic Comparison of Solution and Gas Phase Proteins and Their Complexes. Journal of Physical Chemistry B, 2014, 118, 8489-8495.	1.2	31
17	Controlling Protein Orientation in Vacuum Using Electric Fields. Journal of Physical Chemistry Letters, 2017, 8, 4540-4544.	2.1	29
18	Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Current Opinion in Structural Biology, 2019, 54, 50-58.	2.6	29

Erik G Marklund

#	Article	IF	CITATIONS
19	Formation of secondary electron cascades in single-crystalline plasma-deposited diamond upon exposure to femtosecond x-ray pulses. Journal of Applied Physics, 2008, 103, .	1.1	28
20	Effects of Detergent Micelles on Lipid Binding to Proteins in Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 7425-7430.	3.2	26
21	Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase. Cell Chemical Biology, 2018, 25, 309-317.e4.	2.5	25
22	Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology. Analytical Chemistry, 2020, 92, 10872-10880.	3.2	24
23	Mass spectrometry captures structural intermediates in protein fiber self-assembly. Chemical Communications, 2017, 53, 3319-3322.	2.2	22
24	Mass Spectrometry Reveals the Direct Action of a Chemical Chaperone. Journal of Physical Chemistry Letters, 2018, 9, 4082-4086.	2.1	21
25	Predicting the Shapes of Protein Complexes through Collision Cross Section Measurements and Database Searches. Analytical Chemistry, 2020, 92, 12297-12303.	3.2	19
26	Structural Heterogeneity in Single Particle Imaging Using X-ray Lasers. Journal of Physical Chemistry Letters, 2020, 11, 6077-6083.	2.1	18
27	Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data. Analytical Chemistry, 2020, 92, 10881-10890.	3.2	17
28	Bringing Molecular Dynamics and Ion-Mobility Spectrometry Closer Together: Shape Correlations, Structure-Based Predictors, and Dissociation. Journal of Physical Chemistry B, 2018, 122, 8317-8329.	1.2	16
29	<scp>MkVsites</scp> : A tool for creating <scp>GROMACS</scp> virtual sites parameters to increase performance in allâ€atom molecular dynamics simulations. Journal of Computational Chemistry, 2020, 41, 1564-1569.	1.5	15
30	Gas-Phase Collisions with Trimethylamine- <i>N</i> -Oxide Enable Activation-Controlled Protein Ion Charge Reduction. Journal of the American Society for Mass Spectrometry, 2019, 30, 1385-1388.	1.2	14
31	A strategy for the identification of protein architectures directly from ion mobility mass spectrometry data reveals stabilizing subunit interactions in light harvesting complexes. Protein Science, 2019, 28, 1024-1030.	3.1	13
32	Glycan-Induced Protein Dynamics in Human Norovirus P Dimers Depend on Virus Strain and Deamidation Status. Molecules, 2021, 26, 2125.	1.7	13
33	Complementing machine learningâ€based structure predictions with native mass spectrometry. Protein Science, 2022, 31, .	3.1	13
34	Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. Jacs Au, 2021, 1, 2385-2393.	3.6	12
35	Protein orientation in time-dependent electric fields: orientation before destruction. Biophysical Journal, 2021, 120, 3709-3717.	0.2	11
36	lon mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions. Chemical Communications, 2021, 57, 1450-1453.	2.2	8

Erik G Marklund

#	Article	IF	CITATIONS
37	Molecular self-occlusion as a means for accelerating collision cross-section calculations. International Journal of Mass Spectrometry, 2015, 386, 54-55.	0.7	7
38	Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhysics Letters, 2009, 88, 29901.	0.7	6
39	Reproducibility in the unfolding process of protein induced by an external electric field. Chemical Science, 2021, 12, 2030-2038.	3.7	6
40	Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization. Journal of the American Chemical Society, 2022, 144, 11949-11954.	6.6	6
41	Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis. Cell Stress and Chaperones, 2018, 23, 723-732.	1.2	5
42	Electrospray ionization of native membrane proteins proceeds <i>via</i> a charge equilibration step. RSC Advances, 2022, 12, 9671-9680.	1.7	4
43	Macromol. Biosci. 1/2011. Macromolecular Bioscience, 2011, 11, .	2.1	О