David A Mccormick

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7086972/david-a-mccormick-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

147	33,019	88	157
papers	citations	h-index	g-index
157 ext. papers	37,067 ext. citations	11.5 avg, IF	7.39 L-index

#	Paper	IF	Citations
147	Visual thalamocortical mechanisms of waking state-dependent activity and alpha oscillations. <i>Neuron</i> , 2021 ,	13.9	5
146	Vagus nerve stimulation induces widespread cortical and behavioral activation. <i>Current Biology</i> , 2021 , 31, 2088-2098.e3	6.3	14
145	Pupil-linked phasic arousal predicts a reduction of choice bias across species and decision domains. <i>ELife</i> , 2020 , 9,	8.9	18
144	Movement and Performance Explain Widespread Cortical Activity in a Visual Detection Task. <i>Cerebral Cortex</i> , 2020 , 30, 421-437	5.1	48
143	Neuromodulation of Brain State and Behavior. Annual Review of Neuroscience, 2020, 43, 391-415	17	41
142	Distinct Waking States for Strong Evoked Responses in Primary Visual Cortex and Optimal Visual Detection Performance. <i>Journal of Neuroscience</i> , 2019 , 39, 10044-10059	6.6	18
141	Mechanisms of decreased cholinergic arousal in focal seizures: In vivo whole-cell recordings from the pedunculopontine tegmental nucleus. <i>Experimental Neurology</i> , 2019 , 314, 74-81	5.7	13
140	The temporal organization of mouse ultrasonic vocalizations. <i>PLoS ONE</i> , 2018 , 13, e0199929	3.7	27
139	Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. <i>Cerebral Cortex</i> , 2017 , 27, 3186-3207	5.1	20
138	Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E7600-E7609	11.5	17
137	Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. <i>Nature Communications</i> , 2016 , 7, 13289	17.4	355
136	Knockout of Foxp2 disrupts vocal development in mice. Scientific Reports, 2016, 6, 23305	4.9	44
135	Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model. <i>ENeuro</i> , 2016 , 3,	3.9	6
134	Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex. <i>Journal of Neuroscience</i> , 2015 , 35, 10236-51	6.6	69
133	Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection. <i>Neuron</i> , 2015 , 87, 179-92	13.9	375
132	Waking State: Rapid Variations Modulate Neural and Behavioral Responses. <i>Neuron</i> , 2015 , 87, 1143-116	51 13.9	391
131	Competing Neural Ensembles in Motor Cortex Gate Goal-Directed Motor Output. <i>Neuron</i> , 2015 , 88, 565	5 -73 .9	49

(2010-2015)

130	Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties. <i>Journal of Neuroscience</i> , 2015 , 35, 15555-67	6.6	28
129	Brain state dependent activity in the cortex and thalamus. <i>Current Opinion in Neurobiology</i> , 2015 , 31, 133-40	7.6	118
128	Neural control of brain state. Current Opinion in Neurobiology, 2014 , 29, 178-86	7.6	103
127	Membrane Potential and Action Potential 2014 , 351-376		6
126	Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 16883-	8 ^{11.5}	41
125	Motor cortex feedback influences sensory processing by modulating network state. <i>Neuron</i> , 2013 , 79, 567-78	13.9	178
124	Chronic cellular imaging of entire cortical columns in awake mice using microprisms. <i>Neuron</i> , 2013 , 80, 900-13	13.9	137
123	Membrane Potential and Action Potential 2013 , 93-116		2
122	Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation. <i>Journal of Neuroscience</i> , 2012 , 32, 12165-79	6.6	63
121	Warm body temperature facilitates energy efficient cortical action potentials. <i>PLoS Computational Biology</i> , 2012 , 8, e1002456	5	58
120	The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. <i>Journal of Physiology</i> , 2011 , 589, 4167-87	3.9	84
119	Active action potential propagation but not initiation in thalamic interneuron dendrites. <i>Journal of Neuroscience</i> , 2011 , 31, 18289-302	6.6	30
118	Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. <i>Journal of Neuroscience</i> , 2011 , 31, 15490-8	6.6	63
117	Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. <i>Journal of Neuroscience</i> , 2010 , 30, 6891-902	6.6	104
116	Circuit-based localization of ferret prefrontal cortex. <i>Cerebral Cortex</i> , 2010 , 20, 1020-36	5.1	21
115	P/Q and N channels control baseline and spike-triggered calcium levels in neocortical axons and synaptic boutons. <i>Journal of Neuroscience</i> , 2010 , 30, 11858-69	6.6	64
114	Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. <i>Neuron</i> , 2010 , 65, 107-21	13.9	202
113	Endogenous electric fields may guide neocortical network activity. <i>Neuron</i> , 2010 , 67, 129-43	13.9	568

112	Neocortical networks entrain neuronal circuits in cerebellar cortex. <i>Journal of Neuroscience</i> , 2009 , 29, 10309-20	6.6	90
111	Rapid neocortical dynamics: cellular and network mechanisms. <i>Neuron</i> , 2009 , 62, 171-89	13.9	332
110	Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. <i>Journal of Neuroscience</i> , 2008 , 28, 7260-72	6.6	143
109	Neurophysiology: Hodgkin and Huxley modelstill standing?. <i>Nature</i> , 2007 , 445, E1-2; discussion E2-3	50.4	93
108	State changes rapidly modulate cortical neuronal responsiveness. <i>Journal of Neuroscience</i> , 2007 , 27, 96	0 8. 2 2	161
107	Enhancement of visual responsiveness by spontaneous local network activity in vivo. <i>Journal of Neurophysiology</i> , 2007 , 97, 4186-202	3.2	106
106	Selective control of cortical axonal spikes by a slowly inactivating K+ current. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 11453-8	11.5	141
105	Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. <i>Journal of Neurophysiology</i> , 2007 , 97, 746-60	3.2	149
104	Thalamic synchrony and dynamic regulation of global forebrain oscillations. <i>Trends in Neurosciences</i> , 2007 , 30, 350-6	13.3	294
103	Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. <i>Cell</i> , 2007 , 129, 397-410	56.2	496
102	Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. <i>Journal of Neuroscience</i> , 2006 , 26, 4535-45	6.6	704
101	Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. <i>Nature</i> , 2006 , 441, 761-5	50.4	315
100	Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. <i>Neuron</i> , 2005 , 47, 423-35	13.9	486
99	Neuronal networks: flip-flops in the brain. <i>Current Biology</i> , 2005 , 15, R294-6	6.3	32
98	Slow adaptation in fast-spiking neurons of visual cortex. <i>Journal of Neurophysiology</i> , 2005 , 93, 1111-8	3.2	41
97	Excitatory effects of thyrotropin-releasing hormone in the thalamus. <i>Journal of Neuroscience</i> , 2005 , 25, 1664-73	6.6	46
96	Histamine modulates thalamocortical activity by activating a chloride conductance in ferret perigeniculate neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 6716-21	11.5	28
95	Membrane Potential and Action Potential 2004 , 115-140		2

(2000-2003)

Comparative physiological and serotoninergic properties of pulvinar neurons in the monkey, cat and ferret. <i>Thalamus & Related Systems</i> , 2003 , 2, 239		5
Barrages of synaptic activity control the gain and sensitivity of cortical neurons. <i>Journal of Neuroscience</i> , 2003 , 23, 10388-401	6.6	240
Adaptation and temporal decorrelation by single neurons in the primary visual cortex. <i>Journal of Neurophysiology</i> , 2003 , 89, 3279-93	3.2	90
Turning on and off recurrent balanced cortical activity. <i>Nature</i> , 2003 , 423, 288-93	50.4	811
Comparative physiological and serotoninergic properties of pulvinar neurons in the monkey, cat and ferret. <i>Thalamus & Related Systems</i> , 2003 , 2, 239-252		
Cellular and network mechanisms of slow oscillatory activity (. Journal of Neurophysiology, 2003, 89, 27	0 3.2 5	399
Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. <i>Cerebral Cortex</i> , 2003 , 13, 1219-31	5.1	157
Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. <i>Journal of Neurophysiology</i> , 2003 , 89, 1541-66	3.2	301
Balanced Recurrent Excitation and Inhibition in Local Cortical Networks 2003, 113-124		3
Inhibitory interactions between ferret thalamic reticular neurons. <i>Journal of Neurophysiology</i> , 2002 , 87, 2571-6	3.2	47
Cortical and subcortical generators of normal and abnormal rhythmicity. <i>International Review of Neurobiology</i> , 2002 , 49, 99-114	4.4	54
Neuromodulatory role of serotonin in the ferret thalamus. <i>Journal of Neurophysiology</i> , 2002 , 87, 2124-3	363.2	95
Brain calculus: neural integration and persistent activity. <i>Nature Neuroscience</i> , 2001 , 4, 113-4	25.5	85
On the cellular and network bases of epileptic seizures. <i>Annual Review of Physiology</i> , 2001 , 63, 815-46	23.1	800
Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. <i>Journal of Neuroscience</i> , 2001 , 21, 9101-11	6.6	44
Cellular and network mechanisms of rhythmic recurrent activity in neocortex. <i>Nature Neuroscience</i> , 2000 , 3, 1027-34	25.5	1117
Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. <i>Journal of Neuroscience</i> , 2000 , 20, 5153-62	6.6	245
Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. <i>Journal of Neuroscience</i> , 2000 , 20, 4829-43	6.6	165
	Barrages of synaptic activity control the gain and sensitivity of cortical neurons. Journal of Neuroscience, 2003, 23, 10388-401 Adaptation and temporal decorrelation by single neurons in the primary visual cortex. Journal of Neurophysiology, 2003, 89, 3279-93 Turning on and off recurrent balanced cortical activity. Nature, 2003, 423, 288-93 Comparative physiological and serotoninergic properties of pulvinar neurons in the monkey, cat and ferret. Thalamus & Related Systems, 2003, 2, 239-252 Cellular and network mechanisms of slow oscillatory activity (. Journal of Neurophysiology, 2003, 89, 27 Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cerebral Cortex, 2003, 13, 1219-31 Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology, 2003, 89, 1541-66 Balanced Recurrent Excitation and Inhibition in Local Cortical Networks 2003, 113-124 Inhibitory interactions between ferret thalamic reticular neurons. Journal of Neurophysiology, 2002, 87, 2571-6 Cortical and subcortical generators of normal and abnormal rhythmicity. International Review of Neurobiology, 2002, 49, 99-114 Neuromodulatory role of serotonin in the ferret thalamus. Journal of Neurophysiology, 2002, 87, 2124-3 Brain calculus: neural integration and persistent activity. Nature Neuroscience, 2001, 4, 113-4 On the cellular and network bases of epileptic seizures. Annual Review of Physiology, 2001, 63, 815-46 Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. Journal of Neuroscience, 2001, 21, 9101-11 Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 2000, 3, 1027-34 Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. Journal of Neuroscience, 2000, 20, 5153-62	Barrages of synaptic activity control the gain and sensitivity of cortical neurons. Journal of Neuroscience, 2003, 23, 10388-401 Adaptation and temporal decorrelation by single neurons in the primary visual cortex. Journal of Neurophysiology, 2003, 89, 3279-93 Turning on and off recurrent balanced cortical activity. Nature, 2003, 423, 288-93 50.4 Comparative physiological and serotoninergic properties of pulvinar neurons in the monkey, cat and ferret. Thalamus & Related Systems, 2003, 2, 239-252 Cellular and network mechanisms of slow oscillatory activity (. Journal of Neurophysiology, 2003, 89, 2703-25 Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cerebral Cortex, 2003, 13, 1219-31 Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. Journal of Neurophysiology, 2003, 89, 1541-66 Balanced Recurrent Excitation and Inhibition in Local Cortical Networks 2003, 113-124 Inhibitory interactions between ferret thalamic reticular neurons. Journal of Neurophysiology, 2002, 87, 2571-6 Cortical and subcortical generators of normal and abnormal rhythmicity. International Review of Neurobiology, 2002, 49, 99-114 Neuromodulatory role of serotonin in the ferret thalamus. Journal of Neurophysiology, 2002, 87, 2124-36, 2 Brain calculus: neural integration and persistent activity. Nature Neuroscience, 2001, 4, 113-4 25-5 On the cellular and network bases of epileptic seizures. Annual Review of Physiology, 2001, 63, 815-46 23-1 Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. Journal of Neuroscience, 2001, 21, 9101-11 Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 2000, 3, 1027-34 Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. Journal of Neuroscience, 2000, 20, 5153-62

76	Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. <i>Journal of Neuroscience</i> , 2000 , 20, 4267-85	6.6	252
75	Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. <i>Journal of Neuroscience</i> , 2000 , 20, 4286-99	6.6	258
74	Modulation of a pacemaker current through Ca(2+)-induced stimulation of cAMP production. <i>Nature Neuroscience</i> , 1999 , 2, 634-41	25.5	108
73	Ca(2+)-mediated up-regulation of Ih in the thalamus. How cell-intrinsic ionic currents may shape network activity. <i>Annals of the New York Academy of Sciences</i> , 1999 , 868, 765-9	6.5	18
72	Spontaneous activity: signal or noise?. <i>Science</i> , 1999 , 285, 541-3	33.3	49
71	Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. <i>Neuroscience</i> , 1999 , 91, 7-20	3.9	97
70	Essential role of phosphoinositide metabolism in synaptic vesicle recycling. <i>Cell</i> , 1999 , 99, 179-88	56.2	664
69	Thalamic and thalamocortical mechanisms underlying 3 Hz spike-and-wave discharges. <i>Progress in Brain Research</i> , 1999 , 121, 289-307	2.9	39
68	H-current: properties of a neuronal and network pacemaker. <i>Neuron</i> , 1998 , 21, 9-12	13.9	346
67	Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of Ih. <i>Neuron</i> , 1998 , 20, 553-63	13.9	160
66	The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. <i>Journal of Neuroscience</i> , 1998 , 18, 9500-16	6.6	118
65	Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro. <i>Journal of Neurophysiology</i> , 1998 , 80, 1222-35	3.2	67
64	Periodicity of thalamic spindle waves is abolished by ZD7288,a blocker of Ih. <i>Journal of Neurophysiology</i> , 1998 , 79, 3284-9	3.2	82
63	Influence of low and high frequency inputs on spike timing in visual cortical neurons. <i>Cerebral Cortex</i> , 1997 , 7, 487-501	5.1	199
62	Physiological properties of inhibitory interneurons in cat striate cortex. <i>Cerebral Cortex</i> , 1997 , 7, 534-45	5.1	120
61	Functional dynamics of GABAergic inhibition in the thalamus. <i>Science</i> , 1997 , 278, 130-4	33.3	274
60	Sleep and arousal: thalamocortical mechanisms. <i>Annual Review of Neuroscience</i> , 1997 , 20, 185-215	17	1043
59	Modulation of spindle oscillations by acetylcholine, cholecystokinin and 1S,3R-ACPD in the ferret lateral geniculate and perigeniculate nuclei in vitro. <i>Neuroscience</i> , 1997 , 77, 335-50	3.9	40

58	Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). <i>Journal of Neurophysiology</i> , 1997 , 77, 3145-56	3.2	166
57	Inhibitory interactions between perigeniculate GABAergic neurons. <i>Journal of Neuroscience</i> , 1997 , 17, 8894-908	6.6	91
56	Functional properties of perigeniculate inhibition of dorsal lateral geniculate nucleus thalamocortical neurons in vitro. <i>Journal of Neuroscience</i> , 1997 , 17, 8880-93	6.6	71
55	What stops synchronized thalamocortical oscillations?. <i>Neuron</i> , 1996 , 17, 297-308	13.9	189
54	Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro. <i>Neuron</i> , 1996 , 17, 309-21	13.9	72
53	Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. <i>Science</i> , 1996 , 274, 109-13	33.3	735
52	Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. <i>Journal of Neurophysiology</i> , 1996 , 76, 2049-70	3.2	296
51	Are the interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus?. <i>Journal of Neuroscience</i> , 1996 , 16, 5923-41	6.6	34
50	Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. <i>Neuroscience</i> , 1995 , 68, 1105-25	3.9	133
49	Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse. Journal of Neuroscience, 1994 , 14, 2098-105	6.6	93
48	Sensory gating mechanisms of the thalamus. Current Opinion in Neurobiology, 1994, 4, 550-6	7.6	233
47	Actions of acetylcholine in the cerebral cortex and thalamus and implications for function. <i>Progress in Brain Research</i> , 1993 , 98, 303-8	2.9	66
46	Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral Cortex, 1993, 3, 387	-98 1	242
45	Thalamocortical oscillations in the sleeping and aroused brain. <i>Science</i> , 1993 , 262, 679-85	33.3	2862
44	A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. <i>Biophysical Journal</i> , 1993 , 65, 2473-7	2.9	102
43	Cellular mechanisms of a synchronized oscillation in the thalamus. <i>Science</i> , 1993 , 261, 361-4	33.3	662
42	Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. <i>Journal of Physiology</i> , 1993 , 468, 669-91	3.9	255
41	Neurotransmitter actions in the thalamus and cerebral cortex. <i>Journal of Clinical Neurophysiology</i> , 1992 , 9, 212-23	2.2	133

40	Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1992 , 89, 2774-8	11.5	407
39	Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. <i>Progress in Neurobiology</i> , 1992 , 39, 337-88	10.9	970
38	A model of the electrophysiological properties of thalamocortical relay neurons. <i>Journal of Neurophysiology</i> , 1992 , 68, 1384-400	3.2	495
37	Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. <i>Journal of Neurophysiology</i> , 1992 , 68, 1373-83	3.2	367
36	Determination of State-Dependent Processing in Thalamus by Single Neuron Properties and Neuromodulators 1992 , 259-290		6
35	Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. <i>Journal of Physiology</i> , 1991 , 442, 235-55	3.9	184
34	Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. <i>Journal of Physiology</i> , 1990 , 431, 319-42	3.9	312
33	Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. <i>Journal of Physiology</i> , 1990 , 431, 291-318	3.9	844
32	Mucin depletion in inflammatory bowel disease. <i>Journal of Clinical Pathology</i> , 1990 , 43, 143-6	3.9	88
31	Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. <i>Neuroscience</i> , 1990 , 39, 103-13	3.9	292
30	Refinements in the in-vitro slice technique and human neuropharmacology. <i>Trends in Pharmacological Sciences</i> , 1990 , 11, 53-6	13.2	8
29	Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. <i>Nature</i> , 1989 , 340, 715-8	50.4	341
28	Cholinergic and noradrenergic modulation of thalamocortical processing. <i>Trends in Neurosciences</i> , 1989 , 12, 215-21	13.3	361
27	Convergence and divergence of neurotransmitter action in human cerebral cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1989 , 86, 8098-102	11.5	253
26	Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. <i>Nature</i> , 1988 , 334, 246-8	50.4	235
25	Sarcoidosis and the pancreas. <i>Irish Journal of Medical Science</i> , 1988 , 157, 181-3	1.9	10
24	Postsynaptic Actions of Acetylcholine in the Mammalian Brain in Vitro 1988, 287-302		2
23	Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. <i>Journal of Physiology</i> , 1987 , 393, 743-62	3.9	221

(1981-1987)

22	Actions of acetylcholine in the guinea-pig and cat medial and lateral geniculate nuclei, in vitro. Journal of Physiology, 1987 , 392, 147-65	3.9	241
21	Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. <i>Journal of Physiology</i> , 1986 , 375, 169-94	3.9	414
20	Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. <i>Nature</i> , 1986 , 319, 402-5	50.4	303
19	Two types of muscarinic response to acetylcholine in mammalian cortical neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1985 , 82, 6344-8	11.5	251
18	Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology, 1985 , 54, 782-806	3.2	1555
17	Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. <i>Brain Research</i> , 1985 , 359, 120-30	3.7	330
16	A nonrecoverable learning deficit. <i>Physiological Psychology</i> , 1984 , 12, 103-110		40
15	Effect of bilateral lesions of the dentate and interpositus cerebellar nuclei on conditioning of heart-rate and nictitating membrane/eyelid responses in the rabbit. <i>Brain Research</i> , 1984 , 305, 323-30	3.7	119
14	Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. <i>Brain Research</i> , 1984 , 291, 125-36	3.7	339
13	Cerebellum: essential involvement in the classically conditioned eyelid response. <i>Science</i> , 1984 , 223, 296-9	33.3	857
12	Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM)/eyelid response. <i>Brain Research</i> , 1983 , 271, 73-88	3.7	66
11	Initial localization of the memory trace for a basic form of learning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1982 , 79, 2731-5	11.5	281
10	Superior cerebellar peduncle lesions selectively abolish the ipsilateral classically conditioned nictitating membrane/eyelid response of the rabbit. <i>Brain Research</i> , 1982 , 244, 347-50	3.7	124
9	Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. <i>Brain Research</i> , 1982 , 242, 190-3	3.7	136
8	Locus coeruleus lesions and resistance to extinction of a classically conditioned response: involvement of the neocortex and hippocampus. <i>Brain Research</i> , 1982 , 245, 239-49	3.7	52
7	Concomitant classical conditioning of the rabbit nictitating membrane and eyelid responses: correlations and implications. <i>Physiology and Behavior</i> , 1982 , 28, 769-75	3.5	97
6	The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. <i>Bulletin of the Psychonomic Society</i> , 1981 , 18, 103-105		210
5	Effects of ipsilateral rostral pontine reticular lesions on retention of classically conditioned nictitating membrane and eyelid responses. <i>Physiological Psychology</i> , 1981 , 9, 335-339		64

Low cost oscilloscope histogram generator with memory. *Physiology and Behavior*, **1981**, 27, 1121-5 3.5

3	Movement and performance predict widespread cortical activity in a visual detection task	1
2	Distinct waking states for strong evoked responses in primary visual cortex and optimal visual detection performance	2
1	Visual Thalamocortical Mechanisms of Waking State Dependent Activity and Alpha Oscillations	2