
Wen-Ying Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/708694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated regulation of periclinal cell division by transcriptional module of BZR1‧HR in <i>Arabidopsis</i> roots. New Phytologist, 2022, 233, 795-808.	3.5	13
2	Polymer composites filled with core–shell structured nanofillers: effects of shell thickness on dielectric and thermal properties ofÂcomposites. Journal of Materials Science: Materials in Electronics, 2022, 33, 5174-5189.	1.1	16
3	PVDF reinforced with core–shell structured Mo@MoO3 fillers: effects of semi-conductor MoO3 interlayer on dielectric properties of composites. Journal of Polymer Research, 2022, 29, 1.	1.2	11
4	Suppressed dielectric loss and enhanced breakdown strength in Ni/PVDF composites through constructing Al2O3 shell as an interlayer. Journal of Materials Science: Materials in Electronics, 2022, 33, 9951-9965.	1.1	5
5	Enhanced dielectric and thermal properties of Zn/PVDF composites by tailoring core@double-shell structured Zn particles. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106947.	3.8	10
6	Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties. Journal of Materials Science: Materials in Electronics, 2022, 33, 14735-14753.	1.1	20
7	Insights into Synchronously Enhanced Dielectric Properties and Thermal Conductivity of β-SiC _w /PVDF Nanocomposites by Building a Crystalline SiO ₂ Shell as an Interlayer. Industrial & Engineering Chemistry Research, 2022, 61, 8043-8056.	1.8	4
8	Synchronous enhancements in dielectric performances and thermal conductivity of β-SiCw/PVDF nanocomposites through building crystalline SiO2 shell as an interlayer. Journal of Polymer Research, 2022, 29, .	1.2	3
9	Toward enhancing dielectric properties and thermal conductivity of f-Cu/PVDF with PS as an interlayer. Polymer-Plastics Technology and Materials, 2021, 60, 680-693.	0.6	5
10	Synergy improvement of dielectric properties and thermal conductivity in PVDF composites with coreâ€shell structured Ni@SiO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 4076-4089.	1.1	16
11	Flexible Daytime Radiative Cooling Enhanced by Enabling Three-Phase Composites with Scattering Interfaces between Silica Microspheres and Hierarchical Porous Coatings. ACS Applied Materials & Interfaces, 2021, 13, 19282-19290.	4.0	44
12	Concurrently improving dielectric properties and thermal conductivity of Ni/PVDF composites by constructing NiO shell as an interlayer. Journal of Materials Science: Materials in Electronics, 2021, 32, 14764-14779.	1.1	6
13	Tailoring dielectric performance of Ni/poly(vinylidene fluoride) composites through constructing NiO shell as an interlayer. Journal of Polymer Research, 2021, 28, 1.	1.2	6
14	PVDF composites filled with core–shell fillers of Si@SiO2, Si@SiO2@PS: effects of multiple shells on dielectric properties and thermal conductivity. Journal of Materials Science: Materials in Electronics, 2021, 32, 23429-23444.	1.1	5
15	Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Materials, 2021, 42, 1-11.	9.5	133
16	Relaxation dynamics of Ni/epoxy composites studied by dielectric relaxation spectroscopy. Journal of Elastomers and Plastics, 2020, 52, 304-321.	0.7	3
17	Enhanced dielectric properties of PVDF nanocomposites with modified sandwich-like GO@PVP hybrids. Polymer-Plastics Technology and Materials, 2020, 59, 592-605.	0.6	4
18	High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor. Energy Storage Materials, 2020, 27, 443-452.	9.5	113

#	Article	IF	CITATIONS
19	Improved Dielectric Properties of Thermoplastic Polyurethane Elastomer Filled with Core–Shell Structured PDA@TiC Particles. Materials, 2020, 13, 3341.	1.3	24
20	Lightweight Porous Polystyrene with High Thermal Conductivity by Constructing 3D Interconnected Network of Boron Nitride Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 46767-46778.	4.0	85
21	Simultaneously enhanced impact strength and dielectric properties of an epoxy resin modified with <scp>EHTPB</scp> liquid rubber. Polymer Engineering and Science, 2020, 60, 1984-1997.	1.5	8
22	Concurrently enhanced dielectric properties and thermal conductivity in PVDF composites with core-shell structured l ² -SiCw@SiO2 whiskers. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106021.	3.8	45
23	Ubiquitous Depression Detection of Sleep Physiological Data by Using Combination Learning and Functional Networks. IEEE Access, 2020, 8, 94220-94235.	2.6	14
24	Coreâ€shell structured Al/PVDF nanocomposites with high dielectric permittivity but low loss and enhanced thermal conductivity. Polymer Engineering and Science, 2019, 59, 103-111.	1.5	28
25	Improved dielectric properties and thermal conductivity of PVDF composites filled with core–shell structured Cu@CuO particles. Journal of Materials Science: Materials in Electronics, 2019, 30, 18350-18361.	1.1	37
26	Polymer composites filled with core@double-shell structured fillers: Effects of multiple shells on dielectric and thermal properties. Composites Science and Technology, 2019, 181, 107686.	3.8	99
27	Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification. Applied Physics Letters, 2019, 114, 103702.	1.5	46
28	Surface modification of GO by PDA for dielectric material with well-suppressed dielectric loss. High Performance Polymers, 2019, 31, 1183-1194.	0.8	18
29	Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane. Journal of Materials Science: Materials in Electronics, 2019, 30, 8329-8338.	1.1	13
30	Mechanical and dielectric properties of epoxy composites filled with hybrid aluminum particles with binary size distribution. High Performance Polymers, 2019, 31, 124-134.	0.8	8
31	Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 2018, 9, 1063.	5.8	169
32	Dielectric studies of al nanoparticle reinforced epoxy resin composites. Polymer Composites, 2018, 39, 887-894.	2.3	27
33	A novel fiberâ€reinforced silicone rubber composite with Al particles for enhanced dielectric and thermal properties. Advances in Polymer Technology, 2018, 37, 1507-1516.	0.8	13
34	Past and future on nanodielectrics. IET Nanodielectrics, 2018, 1, 41-47.	2.0	103
35	Comparative study on dynamic thermal-dielectric properties of epoxy composites with Al and Ni particles. Journal of Materials Science: Materials in Electronics, 2018, 29, 13376-13388.	1.1	4
36	Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene. Composites Part A: Applied Science and Manufacturing, 2018, 114, 97-106.	3.8	76

#	Article	IF	CITATIONS
37	Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer. Journal of Materials Science and Technology, 2018, 34, 2415-2423.	5.6	29
38	Dynamic thermal-dielectric behavior of core-shell–structured aluminum particle-reinforced epoxy composites. High Performance Polymers, 2017, 29, 3-12.	0.8	14
39	Thermal, mechanical, and dielectric properties of epoxy resin modified using carboxyl-terminated polybutadiene liquid rubber. Journal of Elastomers and Plastics, 2017, 49, 281-297.	0.7	17
40	Towards suppressing loss tangent: Effect of SiO2 coating layer on dielectric properties of core-shell structure flaky Cu reinforced PVDF composites. Journal of Alloys and Compounds, 2017, 710, 47-56.	2.8	47
41	Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene) Tj ETQq1 1 0.78	4314.rgB1 2.8	Överlock I 110
42	Heat conductive hâ€BN/CTPB/epoxy with enhanced dielectric properties for potential highâ€voltage applications. High Voltage, 2017, 2, 172-178.	2.7	32
43	Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. Journal of Alloys and Compounds, 2016, 682, 738-745.	2.8	84
44	Dielectric relaxation dynamics of Al/epoxy micro-composites. Journal of Alloys and Compounds, 2016, 689, 342-349.	2.8	21
45	Mechanical and Electrical Properties of Aluminum/Epoxy Nanocomposites. Journal of Electronic Materials, 2016, 45, 5885-5894.	1.0	7
46	Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity. Journal of Electronic Materials, 2016, 45, 5974-5984.	1.0	15
47	A Carboxyl-Terminated Polybutadiene Liquid Rubber Modified Epoxy Resin with Enhanced Toughness and Excellent Electrical Properties. Journal of Electronic Materials, 2016, 45, 3776-3785.	1.0	23
48	Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites. Journal of Electronic Materials, 2016, 45, 3069-3078.	1.0	12
49	High dielectric permittivity and low loss in PVDF filled by core-shell Zn@ZnO particles. Journal of Polymer Research, 2016, 23, 1.	1.2	28
50	Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Composites Part A: Applied Science and Manufacturing, 2015, 71, 184-191.	3.8	122
51	Enhanced dielectric properties and thermal conductivity of Al/CNTs/PVDF ternary composites. Journal of Reinforced Plastics and Composites, 2015, 34, 1126-1135.	1.6	33
52	Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Composites Part A: Applied Science and Manufacturing, 2015, 79, 183-191.	3.8	96
53	Thermal, electrical, and mechanical properties of hexagonal boron nitride–reinforced epoxy composites. Journal of Composite Materials, 2014, 48, 2517-2526.	1.2	92
54	Fabrication, thermal, and dielectric properties of self-passivated Al/epoxy nanocomposites. Journal of Materials Science, 2013, 48, 7960-7968.	1.7	42

#	Article	IF	CITATIONS
55	Mechanical, thermal and electrical properties of epoxy modified with a reactive hydroxyl-terminated polystyrene-butadiene liquid rubber. Journal of Reinforced Plastics and Composites, 2013, 32, 1359-1369.	1.6	26
56	Thermal conductivity and dielectric properties of Al/PVDF composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 658-664.	3.8	155
57	Mechanical and dielectric properties of epoxy resin modified using reactive liquid rubber (HTPB). Journal of Applied Polymer Science, 2012, 124, 4346-4351.	1.3	66
58	Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites. Journal of Materials Science, 2011, 46, 3883-3889.	1.7	94
59	Thermal and dielectric properties of the aluminum particle reinforced linear lowâ€density polyethylene composites. Polymer Engineering and Science, 2011, 51, 917-924.	1.5	22
60	Thermal and dielectric properties of the AlN particles reinforced linear low-density polyethylene composites. Thermochimica Acta, 2011, 512, 183-188.	1.2	109
61	Thermal and dielectric properties of the aluminum particle/epoxy resin composites. Journal of Applied Polymer Science, 2010, 118, 3156-3166.	1.3	76
62	Thermal, dielectric, and mechanical properties of SiC particles filled linear lowâ€density polyethylene composites. Journal of Applied Polymer Science, 2009, 112, 1695-1703.	1.3	86
63	Thermal, electrical, and mechanical properties of Si ₃ N ₄ filled LLDPE composite. Polymer Composites, 2009, 30, 866-871.	2.3	23
64	A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Composites Part A: Applied Science and Manufacturing, 2009, 40, 830-836.	3.8	257
65	A Novel Polymeric Coating with High Thermal Conductivity. Polymer-Plastics Technology and Engineering, 2009, 48, 1230-1238.	1.9	14
66	Toughened epoxy resin matrix for a membrane shell by wet filament winding. Journal of Applied Polymer Science, 2009, 111, 255-263.	1.3	10
67	Effect of filler size distribution on the mechanical and physical properties of aluminaâ€filled silicone rubber. Polymer Engineering and Science, 2008, 48, 1381-1388.	1.5	71
68	Thermal Properties of Heat Conductive Silicone Rubber Filled with Hybrid Fillers. Journal of Composite Materials, 2008, 42, 173-187.	1.2	78
69	Novel heat-conductive composite silicone rubber. Journal of Applied Polymer Science, 2007, 104, 2478-2483.	1.3	86
70	Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 2007, 104, 1312-1318.	1.3	244
71	Study on insulating thermal conductive BN/HDPE composites. Thermochimica Acta, 2007, 452, 36-42.	1.2	188
72	Thermally conductive silicone rubber reinforced with boron nitride particle. Polymer Composites, 2007, 28, 23-28.	2.3	190

#	Article	IF	CITATIONS
73	Effect of grafting alkoxysilane on the surface properties of Kevlar fiber. Polymer Composites, 2007, 28, 412-416.	2.3	51
74	Thermal conductivity of boron nitride reinforced polyethylene composites. Materials Research Bulletin, 2007, 42, 1863-1873.	2.7	262
75	A comparative study on dielectric properties of PVDF/GO nanosheets encapsulated with different organic insulating shell. Polymer-Plastics Technology and Materials, 0, , 1-15.	0.6	2
76	Towards synchronously improving dielectric performances and thermal conductivity in Ni/PVDF by tailoring core-shell structured Ni@NiO particles. High Performance Polymers, 0, , 095400832211113.	0.8	5