Petar Žuvela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/708674/publications.pdf

Version: 2024-02-01

26 papers 700 citations

623699 14 h-index 26 g-index

29 all docs

29 docs citations

29 times ranked 770 citing authors

#	Article	IF	CITATIONS
1	Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chemical Reviews, 2019, 119, 3674-3729.	47.7	191
2	Silver-Lactoferrin Nanocomplexes as a Potent Antimicrobial Agent. Journal of the American Chemical Society, 2016, 138, 7899-7909.	13.7	73
3	Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships. Applied Surface Science, 2020, 512, 145612.	6.1	70
4	Molecular Descriptor Subset Selection in Theoretical Peptide Quantitative Structure–Retention Relationship Model Development Using Nature-Inspired Optimization Algorithms. Analytical Chemistry, 2015, 87, 9876-9883.	6.5	40
5	Interpretation of ANNâ€based QSAR models for prediction of antioxidant activity of flavonoids. Journal of Computational Chemistry, 2018, 39, 953-963.	3.3	39
6	Fiber-Optic Raman Spectroscopy with Nature-Inspired Genetic Algorithms Enhances Real-Time in Vivo Detection and Diagnosis of Nasopharyngeal Carcinoma. Analytical Chemistry, 2019, 91, 8101-8108.	6.5	31
7	Non-Linear Quantitative Structure–Activity Relationships Modelling, Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants. International Journal of Molecular Sciences, 2019, 20, 2328.	4.1	29
8	Machine learning in prediction of intrinsic aqueous solubility of drugâ€like compounds: Generalization, complexity, or predictive ability?. Journal of Chemometrics, 2021, 35, e3349.	1.3	25
9	Development of Gradient Retention Model in Ion Chromatography. Part I: Conventional QSRR Approach. Chromatographia, 2014, 77, 985-996.	1.3	21
10	Ensemble Learning Approaches to Data Imbalance and Competing Objectives in Design of an Industrial Machine Vision System. Industrial & Engineering Chemistry Research, 2020, 59, 4636-4645.	3.7	21
11	Non-target analysis of phospholipid and sphingolipid species in egg yolk using liquid chromatography/triple quadrupole tandem mass spectrometry. Journal of Chromatography A, 2017, 1487, 179-186.	3.7	18
12	Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127, 94-100.	2.8	16
13	Interactions of zinc aqua complexes with ovalbumin at the forefront of the Zn2+/ZnO-OVO hybrid complex formation mechanism. Applied Surface Science, 2021, 542, 148641.	6.1	16
14	Mechanistic Chromatographic Column Characterization for the Analysis of Flavonoids Using Quantitative Structure-Retention Relationships Based on Density Functional Theory. International Journal of Molecular Sciences, 2020, 21, 2053.	4.1	15
15	Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1430-1443.	5.2	14
16	Lipophilicity Determination of Antifungal Isoxazolo [3,4-b] pyridin-3(1H)-ones and Their N1-Substituted Derivatives with Chromatographic and Computational Methods. Molecules, 2019, 24, 4311.	3.8	13
17	Quantitative Structure–Retention Relationships with Non-Linear Programming for Prediction of Chromatographic Elution Order. International Journal of Molecular Sciences, 2019, 20, 3443.	4.1	11
18	Affinity of Antifungal Isoxazolo[3,4-b]pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography. Molecules, 2020, 25, 4835.	3.8	9

#	Article	IF	CITATIONS
19	Prediction of Chromatographic Elution Order of Analytical Mixtures Based on Quantitative Structure-Retention Relationships and Multi-Objective Optimization. Molecules, 2020, 25, 3085.	3.8	8
20	Assessment of column selection systems using Partial Least Squares. Journal of Chromatography A, 2015, 1420, 74-82.	3.7	7
21	The study of the molecular mechanism of Lactobacillus paracasei clumping via divalent metal ions by electrophoretic separation. Journal of Chromatography A, 2021, 1652, 462127.	3.7	7
22	Development of an automated method for modelling of bio-crudes originating from biofuel production processes based on thermochemical conversion. Applied Energy, 2018, 215, 670-678.	10.1	6
23	On feature selection for supervised learning problems involving high-dimensional analytical information. RSC Advances, 2016, 6, 82801-82809.	3.6	5
24	Three-Dimensional Quantitative Structure and Activity Relationship of Flavones on Their Hypochlorite Scavenging Capacity. Journal of Agricultural and Food Chemistry, 2022, 70, 8799-8807.	5.2	3
25	The influence of zinc ions concentration on β-lactoglobulin structure – physicochemical properties of Zn–β-lactoglobulin complexes. Journal of Molecular Structure, 2022, 1268, 133745.	3.6	2
26	Fully Automated Approach for Bio-crude Mixture Modelling Based on GC-MS and Elemental Analyses. Computer Aided Chemical Engineering, 2018, , 913-918.	0.5	0