Smadar Naoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7086522/publications.pdf

Version: 2024-02-01

		101384	82410
84	5,508	36	72
papers	citations	h-index	g-index
0.7	07	0.7	2024
87	87	87	3924
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Eccentric Kozai-Lidov Effect and Its Applications. Annual Review of Astronomy and Astrophysics, 2016, 54, 441-489.	8.1	501
2	Hot Jupiters from secular planet–planet interactions. Nature, 2011, 473, 187-189.	13.7	407
3	Secular dynamics in hierarchical three-body systems. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2155-2171.	1.6	308
4	Relativistic redshift of the star SO-2 orbiting the Galactic Center supermassive black hole. Science, 2019, 365, 664-668.	6.0	270
5	ON THE FORMATION OF HOT JUPITERS IN STELLAR BINARIES. Astrophysical Journal Letters, 2012, 754, L36.	3.0	243
6	RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS. Astrophysical Journal, 2013, 773, 187.	1.6	215
7	Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect. Astrophysical Journal, 2018, 856, 140.	1.6	210
8	THE ECCENTRIC KOZAI MECHANISM FOR A TEST PARTICLE. Astrophysical Journal, 2011, 742, 94.	1.6	190
9	Testing General Relativity with Stellar Orbits around the Supermassive Black Hole in Our Galactic Center. Physical Review Letters, 2017, 118, 211101.	2.9	173
10	MERGERS AND OBLIQUITIES IN STELLAR TRIPLES. Astrophysical Journal, 2014, 793, 137.	1.6	166
11	ENERGY FEEDBACK FROM X-RAY BINARIES IN THE EARLY UNIVERSE. Astrophysical Journal Letters, 2013, 776, L31.	3.0	164
12	ECCENTRICITY GROWTH AND ORBIT FLIP IN NEAR-COPLANAR HIERARCHICAL THREE-BODY SYSTEMS. Astrophysical Journal, 2014, 785, 116.	1.6	152
13	Merging binaries in the Galactic Center: the eccentric Kozai–Lidov mechanism with stellar evolution. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3494-3504.	1.6	122
14	CHAOS IN THE TEST PARTICLE ECCENTRIC KOZAI–LIDOV MECHANISM. Astrophysical Journal, 2014, 791, 86.	1.6	115
15	Growth of linear perturbations before the era of the first galaxies. Monthly Notices of the Royal Astronomical Society, 2005, 362, 1047-1053.	1.6	90
16	Throwing Icebergs at White Dwarfs. Astrophysical Journal Letters, 2017, 844, L16.	3.0	88
17	EXTREME ORBITAL EVOLUTION FROM HIERARCHICAL SECULAR COUPLING OF TWO GIANT PLANETS. Astrophysical Journal, 2013, 779, 166.	1.6	86
18	The Eccentric Kozai–Lidov Mechanism for Outer Test Particle. Astronomical Journal, 2017, 154, 18.	1.9	86

#	Article	IF	CITATIONS
19	SIMULATIONS OF EARLY BARYONIC STRUCTURE FORMATION WITH STREAM VELOCITY. II. THE GAS FRACTION. Astrophysical Journal, 2013, 763, 27.	1.6	83
20	KOZAI CYCLES, TIDAL FRICTION, AND THE DYNAMICAL EVOLUTION OF BINARY MINOR PLANETS. Astrophysical Journal, 2009, 699, L17-L21.	1.6	82
21	DETECTION OF GALACTIC CENTER SOURCE G2 AT 3.8 μm DURING PERIAPSE PASSAGE. Astrophysical Journal Letters, 2014, 796, L8.	3.0	81
22	SIMULATIONS OF EARLY BARYONIC STRUCTURE FORMATION WITH STREAM VELOCITY. I. HALO ABUNDANCE. Astrophysical Journal, 2012, 747, 128.	1.6	75
23	The first stars in the Universe. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 373, L98-L102.	1.2	72
24	The formation and gas content of high-redshift galaxies and minihaloes. Monthly Notices of the Royal Astronomical Society, 2007, 377, 667-676.	1.6	62
25	Generation of Primordial Magnetic Fields on Linear Overdensity Scales. Physical Review Letters, 2013, 111, 051303.	2.9	58
26	The Fate of Binaries in the Galactic Center: The Mundane and the Exotic. Astrophysical Journal, 2019, 878, 58.	1.6	58
27	Implications of the eccentric Kozai–Lidov mechanism for stars surrounding supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1341-1349.	1.6	56
28	CIRCUMSTELLAR DEBRIS DISKS: DIAGNOSING THE UNSEEN PERTURBER. Astrophysical Journal, 2016, 826, 19.	1.6	53
29	Detecting Supermassive Black Hole–induced Binary Eccentricity Oscillations with LISA. Astrophysical Journal Letters, 2019, 875, L31.	3.0	52
30	THE OBSERVED ORBITAL PROPERTIES OF BINARY MINOR PLANETS. Astrophysical Journal, 2010, 719, 1775-1783.	1.6	51
31	Black Hole Mergers from Hierarchical Triples in Dense Star Clusters. Astrophysical Journal, 2020, 903, 67.	1.6	50
32	Investigating the Binarity of S0-2: Implications for Its Origins and Robustness as a Probe of the Laws of Gravity around a Supermassive Black Hole. Astrophysical Journal, 2018, 854, 12.	1.6	48
33	HD 106906: A Case Study for External Perturbations of a Debris Disk. Astrophysical Journal Letters, 2017, 837, L6.	3.0	46
34	A population of dust-enshrouded objects orbiting the Galactic black hole. Nature, 2020, 577, 337-340.	13.7	44
35	A-type Stars, the Destroyers of Worlds: The Lives and Deaths of Jupiters in Evolving Stellar Binaries. Astronomical Journal, 2018, 156, 128.	1.9	42
36	A Hidden Friend for the Galactic Center Black Hole, Sgr A*. Astrophysical Journal Letters, 2020, 888, L8.	3.0	41

#	Article	IF	CITATIONS
37	THE DYNAMICS OF THE MULTI-PLANET SYSTEM ORBITING KEPLER-56. Astrophysical Journal, 2014, 794, 131.	1.6	40
38	FORMATION OF BLACK HOLE LOW-MASS X-RAY BINARIES IN HIERARCHICAL TRIPLE SYSTEMS. Astrophysical Journal Letters, 2016, 822, L24.	3.0	40
39	GLOBULAR CLUSTERS AND DARK SATELLITE GALAXIES THROUGH THE STREAM VELOCITY. Astrophysical Journal Letters, 2014, 791, L8.	3.0	37
40	Gas in simulations of high-redshift galaxies and minihaloes. Monthly Notices of the Royal Astronomical Society, 2009, 399, 369-376.	1.6	35
41	Roche-lobe Overflow in Eccentric Planet–Star Systems. Astrophysical Journal, 2017, 844, 12.	1.6	33
42	The Post-periapsis Evolution of Galactic Center Source G1: The Second Case of a Resolved Tidal Interaction with a Supermassive Black Hole. Astrophysical Journal, 2017, 847, 80.	1.6	30
43	Eating Planets for Lunch and Dinner: Signatures of Planet Consumption by Evolving Stars. Astrophysical Journal, 2020, 889, 45.	1.6	29
44	Confusing Binaries: The Role of Stellar Binaries in Biasing Disk Properties in the Galactic Center. Astrophysical Journal Letters, 2018, 853, L24.	3.0	28
45	Open cluster birth analysis and multiple spiral arm sets in the Milky Way. New Astronomy, 2007, 12, 410-421.	0.8	27
46	Hidden planetary friends: on the stability of two-planet systems in the presence of a distant, inclined companion. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4146-4154.	1.6	27
47	Detecting early galaxies through their 21-cm signature. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 385, L63-L67.	1.2	26
48	Gas-rich and gas-poor structures through the stream velocity effect. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1625-1639.	1.6	26
49	The Formation of Intermediate-mass Black Holes in Galactic Nuclei. Astrophysical Journal Letters, 2022, 929, L22.	3.0	26
50	Detecting Kozai–Lidov Imprints on the Gravitational Waves of Intermediate-mass Black Holes in Galactic Nuclei. Astrophysical Journal, 2020, 901, 125.	1.6	25
51	The Supersonic Project: Shining Light on SIGOsâ€"A New Formation Channel for Globular Clusters. Astrophysical Journal Letters, 2019, 878, L23.	3.0	24
52	FORMATION OF DARK MATTER TORI AROUND SUPERMASSIVE BLACK HOLES VIA THE ECCENTRIC KOZAI-LIDOV MECHANISM. Astrophysical Journal, 2014, 795, 102.	1.6	23
53	An observational limit on the earliest gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2007, 380, 757-762.	1.6	21
54	Neutron Star–Black Hole Mergers from Gravitational-wave Captures. Astrophysical Journal, 2020, 903, 8.	1.6	21

#	Article	lF	CITATIONS
55	Giant Planets, Tiny Stars: Producing Short-period Planets around White Dwarfs with the Eccentric Kozai–Lidov Mechanism. Astrophysical Journal, 2021, 922, 4.	1.6	21
56	Inverse Lidov-Kozai resonance for an outer test particle due to an eccentric perturber. Astronomy and Astrophysics, 2019, 627, A17.	2.1	20
57	Companion-driven evolution of massive stellar binaries. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2480-2492.	1.6	19
58	Supernovae Kicks in hierarchical triple systems. Monthly Notices of the Royal Astronomical Society, 0,	1.6	19
59	Demographics of Triple Systems in Dense Star Clusters. Astrophysical Journal, 2020, 900, 16.	1.6	19
60	The role of general relativity on icy body reservoirs under the effects of an inner eccentric Jupiter. Astronomy and Astrophysics, 2018, 615, A21.	2.1	18
61	On Socially Distant Neighbors: Using Binaries to Constrain the Density of Objects in the Galactic Center. Astrophysical Journal, 2020, 904, 113.	1.6	18
62	The non-linear evolution of baryonic overdensities in the early universe: initial conditions of numerical simulations. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	17
63	Effects of an eccentric inner Jupiter on the dynamical evolution of icy body reservoirs in a planetary scattering scenario. Astronomy and Astrophysics, 2017, 605, A64.	2.1	17
64	Gravitational-wave Signatures from Compact Object Binaries in the Galactic Center. Astrophysical Journal, 2021, 917, 76.	1.6	17
65	Understanding Large-scale Structure in the SSA22 Protocluster Region Using Cosmological Simulations ^{â—} . Astrophysical Journal, 2018, 852, 134.	1.6	16
66	Signature of Planetary Mergers on Stellar Spins. Astrophysical Journal, 2018, 864, 65.	1.6	16
67	The stationary points of the hierarchical three-body problem. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1682-1700.	1.6	16
68	The Supersonic Project: rotational effects of supersonic motions on the first structures in the Universe. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3108-3117.	1.6	14
69	The Combined Effects of Two-body Relaxation Processes and the Eccentric Kozai–Lidov Mechanism on the Extreme-mass-ratio Inspirals Rate. Astrophysical Journal Letters, 2022, 927, L18.	3.0	13
70	Unseen companions of V Hya inferred from periodic ejections. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3029-3036.	1.6	10
71	The Supersonic Project: To Cool or Not to Cool Supersonically Induced Gas Objects (SIGOs)?. Astrophysical Journal, 2021, 906, 25.	1.6	10
72	Dark Matter Signatures of Supermassive Black Hole Binaries. Astrophysical Journal Letters, 2019, 885, L35.	3.0	9

#	Article	IF	Citations
73	The Supersonic Project: SIGOs, A Proposed Progenitor to Globular Clusters, and Their Connections to Gravitational-wave Anisotropies. Astrophysical Journal, 2021, 922, 86.	1.6	9
74	Eclipsing Stellar Binaries in the Galactic Center. Astrophysical Journal, 2017, 851, 131.	1.6	8
75	Modeling Turbulence in Galactic Centers. Astronomical Journal, 2021, 161, 243.	1.9	7
76	Relativistic Dynamical Stability Criterion of Multiplanet Systems with a Distant Companion. Astrophysical Journal, 2021, 923, 118.	1.6	6
77	H ₂ Cooling and Gravitational Collapse of Supersonically Induced Gas Objects. Astrophysical Journal Letters, 2022, 927, L12.	3.0	6
78	Effects of Turbulence in the Circumnuclear Disk. Astrophysical Journal, 2021, 920, 79.	1.6	5
79	Kepler-1656b's Extreme Eccentricity: Signature of a Gentle Giant. Astronomical Journal, 2022, 163, 227.	1.9	5
80	Interacting young M-dwarfs in triple system – ParÂ1802 binary system case study. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2298-2306.	1.6	3
81	Jupiter's role in sculpting the early Solar System. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4189-4190.	3.3	2
82	Hiding Planets Near and Far: The Parameter Space of Hidden Companions for Known Planetary Systems. Astrophysical Journal, 2022, 932, 78.	1.6	2
83	The origin of retrograde hot Jupiters. Proceedings of the International Astronomical Union, 2010, 6, 263-266.	0.0	0
84	Dynamical Effects of Stellar Companions. Proceedings of the International Astronomical Union, 2015, 11, 65-70.	0.0	O