Jin-Kyung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7086362/publications.pdf Version: 2024-02-01

IIN-KYLING KIM

#	Article	IF	CITATIONS
1	On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Materialia, 2011, 59, 6809-6819.	3.8	292
2	On the room temperature deformation mechanisms of a Mg–Y–Zn alloy with long-period-stacking-ordered structures. Acta Materialia, 2015, 82, 414-423.	3.8	186
3	Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity. Scripta Materialia, 2011, 65, 363-366.	2.6	175
4	Orientation dependence of twinning and strain hardening behaviour of a high manganese twinning induced plasticity steel with polycrystalline structure. Acta Materialia, 2011, 59, 7787-7799.	3.8	172
5	Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 216-231.	2.6	144
6	On the Tensile Behavior of High-Manganese Twinning-Induced Plasticity Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3147-3158.	1.1	118
7	The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy. Acta Materialia, 2016, 112, 171-183.	3.8	104
8	The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 416-428.	2.6	93
9	Application of a Dislocation Density-Based Constitutive Model to Al-Alloyed TWIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4168-4182.	1.1	71
10	High Mn TWIP Steels for Automotive Applications. , 0, , .		69
11	Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 706, 1-14.	2.6	69
12	On the deformation twinning mechanisms in twinning-induced plasticity steel. Acta Materialia, 2017, 141, 444-455.	3.8	66
13	Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel. Scripta Materialia, 2011, 65, 528-531.	2.6	58
14	Stretchâ€Flangeability of High Mn TWIP steel. Steel Research International, 2010, 81, 552-568.	1.0	55
15	Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel. Scripta Materialia, 2011, 65, 1073-1076.	2.6	52
16	Constitutive Modeling of the Tensile Behavior of Al-TWIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 479-490.	1.1	52
17	Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning. Acta Materialia, 2017, 135, 112-123.	3.8	46
18	On the Stacking Fault Energy of Fe-18ÂPct Mn-0.6ÂPct C-1.5ÂPct Al Twinning-Induced Plasticity Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 932-936.	1.1	38

Јім-Куимд Кім

#	Article	IF	CITATIONS
19	Heterogeneous deformation in twinning-induced plasticity steel. Scripta Materialia, 2012, 66, 986-991.	2.6	38
20	Crack-resistant σ/FCC interfaces in the Fe40Mn40Co10Cr10 high entropy alloy with the dispersed σ-phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142039.	2.6	35
21	Hierarchical precipitates, sequential deformation-induced phase transformation, and enhanced back stress strengthening of the micro-alloyed high entropy alloy. Acta Materialia, 2022, 233, 117974.	3.8	32
22	Temperature-dependent universal dislocation structures and transition of plasticity enhancing mechanisms of the Fe40Mn40Co10Cr10 high entropy alloy. International Journal of Plasticity, 2022, 148, 103148.	4.1	30
23	Partially-recrystallized, Nb-alloyed TWIP steels with a superior strength-ductility balance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 711, 130-139.	2.6	28
24	Diffusional-displacive transformation enables formation of long-period stacking order in magnesium. Scientific Reports, 2017, 7, 4046.	1.6	22
25	An Overview of High Yield Strength Twinning-Induced Plasticity Steels. Metals, 2021, 11, 124.	1.0	20
26	Influence of Manufacturing Conditions on Inclusion Characteristics and Mechanical Properties of FeCrNiMnCo Alloy. Metals, 2020, 10, 1286.	1.0	18
27	On the plasticity mechanisms of lath martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 252-261.	2.6	15
28	Constitutive Modeling of the Stacking Fault Energy-Dependent Deformation Behavior of Fe-Mn-C-(Al) TWIP Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5919-5924.	1.1	15
29	Role of grain size on deformation microstructures and stretch-flangeability of TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138861.	2.6	15
30	Influence of initial microstructures on intercritical annealing behaviour in a medium Mn steel. Materials Science and Technology, 2019, 35, 2092-2100.	0.8	13
31	Observation of dislocations with a Burgers vector containing a âŸ∵c⟩ component in martensitic hcp ε Fe-17%Mn. Scripta Materialia, 2017, 128, 78-82.	2.6	12
32	Solidification Microsegregation and Hot Ductility of Fe-Mn-C-Al-xNb TWIP Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5509-5523.	1.1	11
33	Role of recrystallization and second phases on mechanical properties of (CoCrFeMnNi)95.2Al3.2Ti1.6 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141249.	2.6	11
34	Effect of Prior Austenite Grain Size on Hole Expansion Ratio of Quenching and Partitioning Processed Medium-Mn Steel. Jom, 2019, 71, 1366-1374.	0.9	10
35	Partially-recrystallized ferrite grains and multiple plasticity enhancing mechanisms in a medium Mn steel. Materials Characterization, 2019, 155, 109812.	1.9	9
36	Compositional evolution of long-period stacking ordered structures in magnesium studied by atom probe tomography. Scripta Materialia, 2018, 156, 55-59.	2.6	8

#	Article	IF	CITATIONS
37	Strain Rate Sensitivity of C-alloyed, High-Mn, Twinning-induced Plasticity Steel. , 2009, 80, 493.		5
38	Data related to dislocation density-based constitutive modeling of the tensile behavior of lath martensitic press hardening steel. Data in Brief, 2017, 15, 240-243.	0.5	0