Chiara Elia Ghezzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7085357/publications.pdf Version: 2024-02-01

CHIADA ELIA CHEZZI

#	Article	IF	CITATIONS
1	Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials, 2017, 131, 58-67.	5.7	228
2	Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials, 2011, 32, 8915-8926.	5.7	176
3	Corneal Tissue Engineering: Recent Advances and Future Perspectives. Tissue Engineering - Part B: Reviews, 2015, 21, 278-287.	2.5	146
4	Three-Dimensional Mineralization of Dense Nanofibrillar Collagenâ^'Bioglass Hybrid Scaffolds. Biomacromolecules, 2010, 11, 1470-1479.	2.6	142
5	Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood, 2015, 125, 2254-2264.	0.6	140
6	Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine. Annals of Biomedical Engineering, 2015, 43, 657-680.	1.3	119
7	Silk fibroin derived polypeptide-induced biomineralization of collagen. Biomaterials, 2012, 33, 102-108.	5.7	118
8	InÂvitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials, 2017, 112, 1-9.	5.7	98
9	Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials, 2020, 233, 119729.	5.7	73
10	Immediate production of a tubular dense collagen construct with bioinspired mechanical properties. Acta Biomaterialia, 2012, 8, 1813-1825.	4.1	61
11	Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties. ACS Biomaterials Science and Engineering, 2015, 1, 964-970.	2.6	58
12	Osteoid-Mimicking Dense Collagen/Chitosan Hybrid Gels. Biomacromolecules, 2011, 12, 2946-2956.	2.6	57
13	3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture. PLoS ONE, 2017, 12, e0169504.	1.1	55
14	Fabrication of injectable, cellular, anisotropic collagen tissue equivalents with modular fibrillar densities. Biomaterials, 2015, 37, 183-193.	5.7	54
15	Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels. Biomaterials, 2011, 32, 4761-4772.	5.7	44
16	Corneal pain and experimental model development. Progress in Retinal and Eye Research, 2019, 71, 88-113.	7.3	43
17	Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials, 2015, 54, 126-135.	5.7	41
18	Fibril formation pH controls intrafibrillar collagen biomineralization inÂvitro and inÂvivo. Biomaterials, 2015, 37, 252-259.	5.7	40

CHIARA ELIA GHEZZI

#	Article	IF	CITATIONS
19	The role of physiological mechanical cues on mesenchymal stem cell differentiation in an airway tract-like dense collagen–silk fibroin construct. Biomaterials, 2014, 35, 6236-6247.	5.7	38
20	Acellular bi-layer silk fibroin scaffolds support functional tissue regeneration in a rat model of onlay esophagoplasty. Biomaterials, 2015, 53, 149-159.	5.7	35
21	Collagen gel fibrillar density dictates the extent of mineralization in vitro. Soft Matter, 2011, 7, 9898.	1.2	34
22	Mesenchymal stem cellâ€seeded multilayered dense collagenâ€silk fibroin hybrid for tissue engineering applications. Biotechnology Journal, 2011, 6, 1198-1207.	1.8	33
23	Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 285-295.	1.3	32
24	An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Biomaterials, 2013, 34, 1954-1966.	5.7	29
25	Effect of Chitosan Incorporation and Scaffold Geometry on Chondrocyte Function in Dense Collagen Type I Hydrogels. Tissue Engineering - Part A, 2013, 19, 2553-2564.	1.6	29
26	Into the groove: instructive silk-polypyrrole films with topographical guidance cues direct DRG neurite outgrowth. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1327-1342.	1.9	27
27	Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2046-2059.	1.3	27
28	Coculture of dorsal root ganglion neurons and differentiated human corneal stromal stem cells on silk-based scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 3339-3348.	2.1	26
29	Optimization of silk films as substrate for functional corneal epithelium growth. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 431-441.	1.6	23
30	Human Corneal Tissue Model for Nociceptive Assessments. Advanced Healthcare Materials, 2018, 7, e1800488.	3.9	21
31	Artificial Polymeric Scaffolds as Extracellular Matrix Substitutes for Autologous Conjunctival Goblet Cell Expansion. , 2016, 57, 6134.		20
32	Degradation of Silk Films in Multipocket Corneal Stromal Rabbit Models. Journal of Applied Biomaterials and Functional Materials, 2016, 14, e266-e276.	0.7	17
33	Anionic fibroin-derived polypeptides accelerate MSC osteoblastic differentiation in a three-dimensional osteoid-like dense collagen niche. Journal of Materials Chemistry B, 2014, 2, 5339.	2.9	16
34	Selfâ€Folding 3D Silk Biomaterial Rolls to Facilitate Axon and Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e2000530.	3.9	15
35	Multifunctional SilkTropoelastin Biomaterial Systems. Israel Journal of Chemistry, 2013, 53, 777-786.	1.0	14
36	Modeling Diabetic Corneal Neuropathy in a 3D In Vitro Cornea System. Scientific Reports, 2018, 8, 17294.	1.6	13

CHIARA ELIA GHEZZI

#	Article	IF	CITATIONS
37	Biâ€layer silk fibroin grafts support functional tissue regeneration in a porcine model of onlay esophagoplasty. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e894-e904.	1.3	10
38	Assembly and Application of a Threeâ€Dimensional Human Corneal Tissue Model. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 81, e84.	1.1	9
39	Ex vivo pregnantâ€like tissue model to assess injectable hydrogel for preterm birth prevention. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 468-474.	1.6	9
40	Supracolloidal Assemblies as Sacrificial Templates for Porous Silk-Based Biomaterials. International Journal of Molecular Sciences, 2015, 16, 20511-20522.	1.8	6
41	Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2549-2564.	1.3	6
42	<i>In Vitro</i> Nasal Tissue Model for the Validation of Nasopharyngeal and Midturbinate Swabs for SARS-CoV-2 Testing. ACS Omega, 2022, 7, 12193-12201.	1.6	5
43	Long-Term <i>In Vitro</i> Culture Systems to Study Human Microbiome. ACS Biomaterials Science and Engineering, 2022, 8, 4613-4617.	2.6	4
44	Preclinical Validation of a Novel Injection-Molded Swab for the Molecular Assay Detection of SARS-CoV-2. Diagnostics, 2022, 12, 206.	1.3	3
45	Mineralization of nanomaterials for bone tissue engineering. , 2013, , 387-416.		Ο
46	Collagen-based tubular constructs for tissue engineering applications. , 2014, , 589-632.		0