Tatiana Safronova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7084922/publications.pdf Version: 2024-02-01

20

#	Article	IF	CITATIONS
1	A new generation of calcium phosphate biomaterials: The role of phase and chemical compositions. Glass and Ceramics (English Translation of Steklo I Keramika), 2006, 63, 99-102.	0.2	38
2	Additive technologies for making highly permeable inorganic materials with tailored morphological architectonics for medicine. Inorganic Materials, 2015, 51, 1297-1315.	0.2	32
3	Fibrous Polymer-Based Composites Obtained by Electrospinning for Bone Tissue Engineering. Polymers, 2022, 14, 96.	2.0	32
4	Phase equilibria in the tricalcium phosphate-mixed calcium sodium (potassium) phosphate systems. Russian Journal of Inorganic Chemistry, 2014, 59, 1219-1227.	0.3	31
5	Biocompatibility of biphasic α,β-tricalcium phosphate ceramics in vitro. Bioactive Materials, 2020, 5, 423-427.	8.6	30
6	Resorbable Mg2+-Containing Phosphates for Bone Tissue Repair. Materials, 2021, 14, 4857.	1.3	30
7	Densification additives for hydroxyapatite ceramics. Journal of the European Ceramic Society, 2009, 29, 1925-1932.	2.8	28
8	Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction. Glass and Ceramics (English Translation of Steklo I Keramika), 2009, 66, 136-139.	0.2	27
9	Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics. Glass and Ceramics (English Translation of Steklo I Keramika), 2011, 68, 28-32.	0.2	26
10	Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations. Inorganic Materials, 2007, 43, 901-909.	0.2	25
11	Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application. Ceramics International, 2017, 43, 1310-1317.	2.3	25
12	Inorganic Materials for Regenerative Medicine. Inorganic Materials, 2021, 57, 443-474.	0.2	25
13	Ceramics based on calcium pyrophosphate nanopowders. Processing and Application of Ceramics, 2013, 7, 9-14.	0.4	24
14	Powder systems for calcium phosphate ceramics. Inorganic Materials, 2017, 53, 17-26.	0.2	24
15	Fabrication of osteoconductive Ca3–x M2x (PO4)2 (M = Na, K) calcium phosphate bioceramics by stereolithographic 3D printing. Inorganic Materials, 2017, 53, 529-535.	0.2	24
16	Composite ceramic containing a bioresorbable phase. Glass and Ceramics (English Translation of) Tj ETQq0 0 0 rg	gBT /Overla	ock 10 Tf 50
17	Biological Effect of the Surface Modification of the Fibrous Poly(L-lactic acid) Scaffolds by Radio Frequency Magnetron Sputtering of Different Calcium-Phosphate Targets. BioNanoScience, 2017, 7, 50-57.	1.5	21

¹⁸Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the
preparation of bioceramics. Inorganic Materials, 2015, 51, 1177-1184.0.2

#	Article	IF	CITATIONS
19	Octacalcium phosphate as a precursor for the fabrication of composite bioceramics. Inorganic Materials, 2017, 53, 212-219.	0.2	20
20	Synthesis of nanocrystalline calcium hydroxyapatite from calcium saccharates and ammonium hydrogen phosphate. Doklady Chemistry, 2009, 426, 118-123.	0.2	17
21	Features of Octacalcium Phosphate Thermolysis. Refractories and Industrial Ceramics, 2014, 54, 420-424.	0.2	17
22	Calcium phosphate based ceramic with a resorbable phase and low sintering temperature. Glass and Ceramics (English Translation of Steklo I Keramika), 2007, 64, 238-243.	0.2	16
23	Synthesis of Monetite from Calcium Hydroxyapatite and Monocalcium Phosphate Monohydrate under Mechanical Activation Conditions. Russian Journal of Inorganic Chemistry, 2019, 64, 1088-1094.	0.3	16
24	Powders Mixtures Based on Ammonium Pyrophosphate and Calcium Carbonate for Preparation of Biocompatible Porous Ceramic in the CaO–P2O5 System. Refractories and Industrial Ceramics, 2016, 56, 502-509.	0.2	15
25	Resorption of Ca3 – xM2x(PO4)2 (M = Na, K) Calcium Phosphate Bioceramics in Model Solutions. Inorganic Materials, 2018, 54, 500-508.	0.2	15
26	Porous materials made from calcium phosphates (Review). Class and Ceramics (English Translation of) Tj ETQq0	0 0 rgBT /	Overlock 10 1 14
27	Biphase CaO–P2O5 ceramic based on powder synthesized from calcium acetate and ammonium hydrophosphate. Glass and Ceramics (English Translation of Steklo I Keramika), 2013, 70, 65-70.	0.2	14
28	Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate. Inorganic Materials: Applied Research, 2017, 8, 118-125.	0.1	14
29	Resorbable Calcium Phosphates Based Ceramics. Powder Metallurgy and Metal Ceramics, 2013, 52, 357-363.	0.4	13
30	Ceramics Based on Brushite Powder Synthesized from Calcium Nitrate and Disodium and Dipotassium Hydrogen Phosphates. Inorganic Materials, 2018, 54, 195-207.	0.2	11
31	Calcium Phosphate Ceramic in the System Ca(PO3)2–Ca2P2O7 Based on Powder Mixtures Containing Calcium Hydrophosphate. Glass and Ceramics (English Translation of Steklo I Keramika), 2018, 75, 279-286.	0.2	11
32	Colloidal forming of macroporous calcium pyrophosphate bioceramics in 3D-printed molds. Bioactive Materials, 2020, 5, 309-317.	8.6	11
33	Chemical Transformations of Calcium Phosphates during Production of Ceramic Materials on Their Basis. Inorganic Materials, 2019, 55, 1328-1341.	0.2	10
34	Ceramics made from calcium hydroxyapatite synthesized from calcium acetate and potassium hydrophosphate. Glass and Ceramics (English Translation of Steklo I Keramika), 2008, 65, 131-135.	0.2	9
35	Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO43â^']=1 for bioresorbable ceramics. Open Chemistry, 2009, 7, 184-191.	1.0	9
36	Calcium phosphate powders synthesized from calcium chloride and potassium hydrophosphate. Journal of Thermal Analysis and Calorimetry, 2010, 101, 707-713.	2.0	9

#	Article	IF	CITATIONS
37	Ceramics based on calcium hydroxyapatite synthesized from calcium acetate, calcium hydroxide, and potassium hydrophosphate. Glass and Ceramics (English Translation of Steklo I Keramika), 2012, 69, 30-36.	0.2	9
38	Calcium Phosphate Foam Ceramic Based on Hydroxyapatite–Brushite Powder Mixture. Glass and Ceramics (English Translation of Steklo I Keramika), 2019, 76, 113-118.	0.2	9
39	Ca2P2O7–Ca(PO3)2 Ceramic Obtained by Firing β-Tricalcium Phosphate and Monocalcium Phosphate Monohydrate Based Cement Stone. Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 77, 165-172.	0.2	9
40	Ceramics in the Ca2P2O7–Ca(PO3)2 System Obtained by Annealing of the Samples Made from Hardening Mixtures Based on Calcium Citrate Tetrahydrate and Monocalcium Phosphate Monohydrate. Inorganic Materials: Applied Research, 2020, 11, 777-786.	0.1	9
41	Calcium Phosphate Compositions with Polyvinyl Alcohol for 3D Printing. Inorganic Materials: Applied Research, 2020, 11, 192-197.	0.1	9
42	Properties of calcium phosphate powder synthesized from calcium acetate and sodium hydrophosphate. Glass and Ceramics (English Translation of Steklo I Keramika), 2011, 68, 131-135.	0.2	8
43	Osteoconductive ceramics with a specified system of interconnected pores based on double calcium alkali metal phosphates. Doklady Chemistry, 2015, 460, 61-65.	0.2	8
44	Calcium Phosphate Ceramic Based on Powder Synthesized From a Mixed-Anionic Solution. Glass and Ceramics (English Translation of Steklo I Keramika), 2016, 73, 25-31.	0.2	8
45	Stereolithographic 3D Printing of Bioceramic Scaffolds of a Given Shape and Architecture for Bone Tissue Regeneration. Inorganic Materials: Applied Research, 2019, 10, 1101-1108.	0.1	8
46	Synthesis of Calcium Pyrophosphate Powders from Phosphoric Acid and Calcium Carbonate. Inorganic Materials: Applied Research, 2021, 12, 986-992.	0.1	8
47	Electro- and Magnetoactive Materials in Medicine: A Review of Existing and Potential Areas of Application. Inorganic Materials, 2020, 56, 1319-1337.	0.2	8
48	Ceramics based on calcium phosphate powder synthesized from calcium saccharate and ammonium hydrophosphate. Inorganic Materials: Applied Research, 2016, 7, 635-640.	0.1	7
49	Calcium Phosphate Powder Synthesized from Calcium Acetate and Ammonium Hydrophosphate for Bioceramics Application. Ceramics, 2018, 1, 375-392.	1.0	7
50	Composite Bioceramics Engineering Based on Analysis of Phase Equilibria in the Ca3(PO4)2–CaNaPO4–CaKPO4 System. Inorganic Materials, 2019, 55, 516-523.	0.2	7
51	Ceramics based on hydroxyapatite synthesized from calcium chloride and potassium hydrophosphate. Glass and Ceramics (English Translation of Steklo I Keramika), 2009, 66, 66-69.	0.2	6
52	Modifying brushite-containing phosphate cements by complexing additives. Russian Journal of Inorganic Chemistry, 2013, 58, 1152-1159.	0.3	6
53	Synthesis of Calcium-Phosphate Powder from Calcium Formiate and Ammonium Hydrophosphate for Obtaining Biocompatible Resorbable Biphase Ceramic Materials. Glass and Ceramics (English) Tj ETQq1 1 0.784	314orgBT/	Ovørlock 10
54	Synthesis of calcium phosphate powder from calcium lactate and ammonium hydrogen phosphate for the fabrication of bioceramics. Inorganic Materials, 2017, 53, 859-868.	0.2	6

#	Article	IF	CITATIONS
55	Powder Mixtures Based on Calcium Hydroxyapatite and Sodium Salts. Inorganic Materials: Applied Research, 2018, 9, 726-731.	0.1	6
56	Ceramics Based on Powder Mixtures Containing Calcium Hydrogen Phosphates and Sodium Salts (Na2CO3, Na4P2O7, and NaPO3). Inorganic Materials, 2018, 54, 724-735.	0.2	6
57	Powders Synthesized from Calcium Acetate and Mixed-Anionic Solutions, Containing Orthophosphate and Carbonate Ions, for Obtaining Bioceramic. Glass and Ceramics (English Translation of Steklo I) Tj ETQq1 1 0.7	8 0 3214 rgE	3 T 6/Overlock
58	On the Choice of the Architecture of Osteoconductive Bioceramic Implants. Inorganic Materials: Applied Research, 2019, 10, 242-247.	0.1	6
59	Bioceramics Based on β-Calcium Pyrophosphate. Materials, 2022, 15, 3105.	1.3	6
60	Disperse systems in calcium hydroxyapatite ceramics technology. Glass and Ceramics (English) Tj ETQq0 0 0 rgBT	8verlock	10 Tf 50 54
61	Multiphase ceramics based on powders synthesized from sodium pyrophosphate and soluble calcium salts using mechanical activation. Glass and Ceramics (English Translation of Steklo I Keramika), 2012, 69, 276-282.	0.2	5
62	Strength Characteristics of Resorbable Osteoconductive Ceramics Based on Diphosphates of Calcium and Alkali Metals. Russian Physics Journal, 2014, 56, 1183-1189.	0.2	5
63	Porous Ceramic Based on Calcium Pyrophosphate. Refractories and Industrial Ceramics, 2015, 56, 43-47.	0.2	5
64	Composite Bioceramic Based on Octacalcium Phosphate Decomposition Products. Glass and Ceramics (English Translation of Steklo I Keramika), 2017, 74, 67-72.	0.2	5
65	Ceramics Based on a Powder Mixture of Calcium Hydroxyapatite, Monocalcium Phosphate Monohydrate, and Sodium Hydrogen Phosphate Homogenized under Mechanical Activation Conditions. Inorganic Materials: Applied Research, 2020, 11, 879-885.	0.1	5
66	Synthesis of double ammonium'calcium pyrophosphate monohydrate Ca(NH4)2P2O7•H2O as the p recursor of biocompatible phases of calcium phosphate ceramics. Russian Chemical Bulletin, 2020, 69, 139-147.	0.4	5
67	Ceramics Based on CaSO4â‹2H2O Powder Synthesized from Ca(NO3)2 and (NH4)2SO4. Inorganic Materials, 2021, 57, 867-873.	0.2	5
68	Influence of maturation conditions of hydroxyapatite gel on the composition of xerogel. Russian Journal of Applied Chemistry, 2013, 86, 146-150.	0.1	4
69	Wetting and spreading of molten NaCl and CaCl2 over polycrystalline hydroxyapatite. Mendeleev Communications, 2014, 24, 12-14.	0.6	4
70	Calcium Phosphate Powder for Obtaining of Composite Bioceramics. Inorganic Materials: Applied Research, 2021, 12, 34-39.	0.1	4
71	Adaptable Metamaterials Based on Biodegradable Composites for Bone Tissue Regeneration. Inorganic Materials: Applied Research, 2021, 12, 404-415.	0.1	4
72	Ceramics in the K2O–CaO–SO3–P2O5 System. Russian Journal of Inorganic Chemistry, 2021, 66, 1057-1066.	0.3	4

#	Article	IF	CITATIONS
73	Ceramics based on calcium hydroxyapatite synthesized in the presence of PVA. Glass and Ceramics (English Translation of Steklo I Keramika), 2007, 64, 408-412.	0.2	3
74	Phase composition of powdered material based on calcium hydroxyapatite and sodium dihydrophosphate. Glass and Ceramics (English Translation of Steklo I Keramika), 2009, 66, 293-296.	0.2	3
75	Hydroxyapatite formation under combined treatment of a gel in the secondary maturation stage. Russian Journal of General Chemistry, 2015, 85, 1-6.	0.3	3
76	CALCIUM PHOSPHATE FOAM CERAMICS WITH REGULATED BIOACTIVITY. Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2018, , 374-382.	0.2	3
77	Colloidal forming of chemically bonded calcium phosphate composites. Inorganic Materials: Applied Research, 2017, 8, 153-158.	0.1	2
78	Investigation of Highly Concentrated Calcium Phosphate Suspensions for Forming Bioceramic with Complex Architecture. Glass and Ceramics (English Translation of Steklo I Keramika), 2018, 74, 378-381.	0.2	2
79	Synthesis of the Nanoscale Calcium Hydroxyapatite from Calcium Malate and Ammonium Hydrophosphate. Inorganic Materials: Applied Research, 2019, 10, 841-845.	0.1	2
80	Thermal Transformations in Hardening Compositions Based on Hydroxyapatite, Monocalcium Phosphate Monohydrate, and Polymeric Binders. Glass and Ceramics (English Translation of Steklo I) Tj ETQq0 0 0	n g∄ T/Ovo	enłock 10 Tf
81	Properties of Calcium Phosphate Powder Synthesized from Calcium Chloride and Potassium Pyrophosphate. Inorganic Materials: Applied Research, 2020, 11, 44-49.	0.1	2
82	THERMAL EVOLUTION OF CALCIUM PHOSPHATE FOAM CERAMICS OBTAINED ON THE BASIS OF HYDROXYAPATITE AND MONOCALCIUM PHOSPHATE OF MONOHYDRATE. Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2019, , 615-623.	0.2	2
83	Powder Mixture for the Production of Microporous Ceramics Based on Hydroxyapatite. Ceramics, 2022, 5, 108-119.	1.0	2
84	Biocompatible Ceramics for Implants Based on Calcium Phosphates. Materials Research Society Symposia Proceedings, 2006, 951, 31.	0.1	1
85	Chemical Transformations as a Tool for Controlling the Properties of Calcium Carbonate Powder. Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 77, 145-148.	0.2	1
86	Са2Ð2О7—Са(ÐО3)2 system ceramics made by burning of specimens from hardening mixtures based on citrate and monocalcium phosphate monohydrate. Materialovedenie, 2019, , 31-40.	calcium 0.0	1
87	Mixed Ca2+/Na+(Mg2+) polyphosphates for polymer matrix filling and their solubility. IOP Conference Series: Materials Science and Engineering, 2018, 447, 012020.	0.3	0
88	Properties of Composites with Calcium Phosphate Filled Polymer Matrix, Obtained Using Stereolithographic Printing for Ceramic Materials with Prescribed Pore-Space Architecture. Glass and Ceramics (English Translation of Steklo I Keramika), 2019, 76, 77-81.	0.2	0
89	Ceramics based on powders synthesized from ammonium hydrophosphate and acetates of calcium and magnesium. Materialovedenie, 2021, , 33-40.	0.0	0
90	Fine Biocompatible Powders Synthesized from Calcium Lactate and Ammonium Sulfate. Ceramics, 2021, 4, 391-396.	1.0	0

#	Article	IF	CITATIONS
91	INFLUENCE OF TRICALCIUM PHOSPHATE PHASE ON THE STRENGTH OF HYDROXYAPATITE FOARM CERAMICS IN THE THERMAL ANNEALING PROCESS. Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2017, , 264-270.	0.2	0
92	On architecture of osteoconductive bioceramic implants. Materialovedenie, 2018, , 43-48.	0.0	0
93	Synthesis of nanoscale calcium hydroxyapatite from calcium malate and ammonium hydrogen phosphate. Materialovedenie, 2018, .	0.0	0
94	Properties of calcium phosphate powder synthesized from calcium chloride and potassium pyrophosphate. Materialovedenie, 2019, , 37-42.	0.0	0
95	Ceramics based on powder mixture of calcium hydroxyapatite, monocalcium phosphate monohydrate and sodium hydrogen phosphate homogenized under conditions of mechanical activation. Materialovedenie, 2019, , 43-48.	0.0	0
96	Calcium-phosphate powder for production of composite ceramics. Materialovedenie, 2020, , 39-44.	0.0	0
97	Calcium pyrophosphate powder synthesized from phosphoric acid and calcium carbonate. Materialovedenie, 2020, , 42-48.	0.0	0