Steve Bilodeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7084857/publications.pdf

Version: 2024-02-01

361413 377865 5,294 32 20 34 citations h-index g-index papers 36 36 36 9894 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Subversion of infiltrating prostate macrophages to a mixed immunosuppressive tumorâ€associated macrophage phenotype. Clinical and Translational Medicine, 2022, 12, e581.	4.0	9
2	Cis-regulatory hubs: a new 3D model of complex disease genetics with an application to schizophrenia. Life Science Alliance, 2022, 5, e202101156.	2.8	4
3	The gut–liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends in Cancer, 2022, 8, 583-597.	7.4	22
4	Control of adipogenic commitment by a STAT3-VSTM2A axis. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E259-E269.	3.5	8
5	Proximity-dependent Mapping of the Androgen Receptor Identifies Kruppel-like Factor 4 as a Functional Partner. Molecular and Cellular Proteomics, 2021, 20, 100064.	3.8	11
6	Modulating HSF1 levels impacts expression of the estrogen receptor \hat{l}_{\pm} and antiestrogen response. Life Science Alliance, 2021, 4, e202000811.	2.8	7
7	ZNF768 links oncogenic RAS to cellular senescence. Nature Communications, 2021, 12, 4841.	12.8	11
8	Defining the Transcriptional Ecosystem. Molecular Cell, 2018, 72, 920-924.	9.7	18
9	Connected Gene Communities Underlie Transcriptional Changes in Cornelia de Lange Syndrome. Genetics, 2017, 207, 139-151.	2.9	23
10	FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells. Scientific Reports, 2016, 6, 34962.	3.3	40
11	metagene Profiles Analyses Reveal Regulatory Element's Factor-Specific Recruitment Patterns. PLoS Computational Biology, 2016, 12, e1004751.	3.2	12
12	Mutant cohesin affects RNA polymerase II regulation in Cornelia de Lange syndrome. Scientific Reports, 2015, 5, 16803.	3.3	35
13	ZFHX4 Interacts with the NuRD Core Member CHD4 and Regulates the Glioblastoma Tumor-Initiating Cell State. Cell Reports, 2014, 6, 313-324.	6.4	106
14	Multiple Structural Maintenance of Chromosome Complexes at Transcriptional Regulatory Elements. Stem Cell Reports, 2013, 1, 371-378.	4.8	113
15	A Chromatin Switch for Chromosome Condensation. Developmental Cell, 2012, 23, 1127-1128.	7.0	4
16	X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13004-13009.	7.1	179
17	Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature, 2012, 482, 221-225.	27.8	527
18	Master Transcription Factors Determine Cell-Type-Specific Responses to TGF-Î ² Signaling. Cell, 2011, 147, 565-576.	28.9	536

#	Article	IF	Citations
19	The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature, 2011, 471, 513-517.	27.8	506
20	Mediator and cohesin connect gene expression and chromatin architecture. Nature, 2010, 467, 430-435.	27.8	1,707
21	Stem Cells, Differentiation and Cell Cycle Control in Pituitary. Frontiers of Hormone Research, 2010, 38, 15-24.	1.0	20
22	Cooperation between Cyclin E and p27Kip1 in Pituitary Tumorigenesis. Molecular Endocrinology, 2010, 24, 1835-1845.	3.7	76
23	SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes and Development, 2009, 23, 2484-2489.	5.9	292
24	Distinct Developmental Roles of Cell Cycle Inhibitors p57 ^{Kip2} and p27 ^{Kip1} Distinguish Pituitary Progenitor Cell Cycle Exit from Cell Cycle Reentry of Differentiated Cells. Molecular and Cellular Biology, 2009, 29, 1895-1908.	2.3	113
25	Wnt Signaling Promotes Reprogramming of Somatic Cells to Pluripotency. Cell Stem Cell, 2008, 3, 132-135.	11.1	396
26	Expression and mutation analysis of Tpit in the canine pituitary gland and corticotroph adenomas. Domestic Animal Endocrinology, 2008, 34, 217-222.	1.6	8
27	Of old and new diseases: genetics of pituitary ACTH excess (Cushing) and deficiency. Clinical Genetics, 2007, 72, 175-182.	2.0	42
28	Role of Brg1 and HDAC2 in GR <i>trans</i> -repression of the pituitary <i>POMC</i> gene and misexpression in Cushing disease. Genes and Development, 2006, 20, 2871-2886.	5.9	213
29	Rb Enhances p160/SRC Coactivator-dependent Activity of Nuclear Receptors and Hormone Responsiveness. Journal of Biological Chemistry, 2005, 280, 19746-19756.	3.4	42
30	Retinoblastoma and the Related Pocket Protein p107 Act as Coactivators of NeuroD1 to Enhance Gene Transcription. Journal of Biological Chemistry, 2005, 280, 16088-16095.	3.4	32
31	Protein-Protein Interactions and Transcriptional Antagonism between the Subfamily of NGFI-B/Nur77 Orphan Nuclear Receptors and Glucocorticoid Receptor. Molecular Endocrinology, 2005, 19, 885-897.	3.7	106
32	The T-box Factor Tpit Recruits SRC/p160 Co-activators and Mediates Hormone Action. Journal of Biological Chemistry, 2003, 278, 46523-46532.	3.4	65