
Jessica C F Kwok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7084633/publications.pdf Version: 2024-02-01

IFSSICA C F KWOK

#	Article	IF	CITATIONS
1	Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice. Brain Research Bulletin, 2022, 181, 144-156.	1.4	9
2	Long-Term Cultures of Spinal Cord Interneurons. Frontiers in Cellular Neuroscience, 2022, 16, 827628.	1.8	3
3	Proteoglycan Sulphation in the Function of the Mature Central Nervous System. Frontiers in Integrative Neuroscience, 2022, 16, .	1.0	13
4	The extracellular matrix and perineuronal nets in memory. Molecular Psychiatry, 2022, 27, 3192-3203.	4.1	39
5	A quartz crystal microbalance method to quantify the size of hyaluronan and other glycosaminoglycans on surfaces. Scientific Reports, 2022, 12, .	1.6	9
6	Oxygen transport kinetics underpin rapid and robust diaphragm recovery following chronic spinal cord injury. Journal of Physiology, 2021, 599, 1199-1224.	1.3	7
7	Systemic α-synuclein injection triggers selective neuronal pathology as seen in patients with Parkinson's disease. Molecular Psychiatry, 2021, 26, 556-567.	4.1	24
8	Transvascular delivery of α-synuclein preformed fibrils, using the RVG9R delivery system, generates α-synuclein pathology in the duodenal myenteric plexus of non-transgenic rats. Molecular Psychiatry, 2021, 26, 365-365.	4.1	1
9	Substrate Specificity and Biochemical Characteristics of an Engineered Mammalian Chondroitinase ABC. ACS Omega, 2021, 6, 11223-11230.	1.6	Ο
10	Chondroitin 6-sulphate is required for neuroplasticity and memory in ageing. Molecular Psychiatry, 2021, 26, 5658-5668.	4.1	36
11	Secretion of a mammalian chondroitinase ABC aids glial integration at PNS/CNS boundaries. Scientific Reports, 2020, 10, 11262.	1.6	17
12	New Model of Ventral Spinal Cord Lesion Induced by Balloon Compression in Rats. Biomedicines, 2020, 8, 477.	1.4	3
13	Transplantation of Neural Precursors Derived from Induced Pluripotent Cells Preserve Perineuronal Nets and Stimulate Neural Plasticity in ALS Rats. International Journal of Molecular Sciences, 2020, 21, 9593.	1.8	9
14	MiRâ€29 coordinates ageâ€dependent plasticity brakes in the adult visual cortex. EMBO Reports, 2020, 21, e50431.	2.0	15
15	Visualization of Perineuronal Nets in Central Nervous System Tissue Sections. Methods in Molecular Biology, 2020, 2043, 251-260.	0.4	2
16	Neuronal Pentraxin 2 Binds PNNs and Enhances PNN Formation. Neural Plasticity, 2019, 2019, 1-13.	1.0	20
17	The potential of memory enhancement through modulation of perineuronal nets. British Journal of Pharmacology, 2019, 176, 3611-3621.	2.7	27
18	Glycosaminoglycans in extracellular matrix organisation: are concepts from soft matter physics key to understanding the formation of perineuronal nets?. Current Opinion in Structural Biology, 2018, 50, 65-74.	2.6	54

JESSICA C F KWOK

#	Article	IF	CITATIONS
19	Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones. International Journal of Molecular Sciences, 2018, 19, 1172.	1.8	31
20	Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration. Neurobiology of Aging, 2017, 59, 197-209.	1.5	49
21	A Sweet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication. Frontiers in Integrative Neuroscience, 2017, 11, 33.	1.0	57
22	Selective rab11 transport and the intrinsic regenerative ability of CNS axons. ELife, 2017, 6, .	2.8	59
23	Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging, 2017, 9, 1607-1622.	1.4	103
24	Perineuronal Nets and CNS Plasticity and Repair. Neural Plasticity, 2016, 2016, 1-2.	1.0	32
25	Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity. Journal of Neuroscience, 2016, 36, 11459-11468.	1.7	323
26	Glycosaminoglycans and Glycomimetics in the Central Nervous System. Molecules, 2015, 20, 3527-3548.	1.7	34
27	A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Frontiers in Cellular Neuroscience, 2015, 9, 449.	1.8	16
28	"GAG-ing with the neuron― The role of glycosaminoglycan patterning in the central nervous system. Experimental Neurology, 2015, 274, 100-114.	2.0	99
29	Full length talin stimulates integrin activation and axon regeneration. Molecular and Cellular Neurosciences, 2015, 68, 1-8.	1.0	49
30	Perineuronal Nets: A Special Structure in the Central Nervous System Extracellular Matrix. Neuromethods, 2015, , 23-32.	0.2	10
31	Neural ECM in regeneration and rehabilitation. Progress in Brain Research, 2014, 214, 179-192.	0.9	28
32	The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials, 2014, 35, 3919-3925.	5.7	331
33	Targeting Inhibitory Chondroitin Sulphate Proteoglycans to Promote Plasticity After Injury. Methods in Molecular Biology, 2014, 1162, 127-138.	0.4	12
34	The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Molecular and Cellular Neurosciences, 2013, 56, 186-200.	1.0	108
35	Semaphorin 3A Binds to the Perineuronal Nets via Chondroitin Sulfate Type E Motifs in Rodent Brains. Journal of Biological Chemistry, 2013, 288, 27384-27395.	1.6	120
36	Effects of Digesting Chondroitin Sulfate Proteoglycans on Plasticity in Cat Primary Visual Cortex. Journal of Neuroscience, 2013, 33, 234-243.	1.7	47

JESSICA C F KWOK

#	Article	IF	CITATIONS
37	Chondroitin sulfate: A key molecule in the brain matrix. International Journal of Biochemistry and Cell Biology, 2012, 44, 582-586.	1.2	113
38	Kindlin-1 Enhances Axon Growth on Inhibitory Chondroitin Sulfate Proteoglycans and Promotes Sensory Axon Regeneration. Journal of Neuroscience, 2012, 32, 7325-7335.	1.7	50
39	Chondroitin sulfates in the developing rat hindbrain confine commissural projections of vestibular nuclear neurons. Neural Development, 2012, 7, 6.	1.1	12
40	Chondroitin Sulfates in Axon Regeneration and Plasticity. Trends in Glycoscience and Glycotechnology, 2011, 23, 201-211.	0.0	3
41	Extracellular matrix and perineuronal nets in CNS repair. Developmental Neurobiology, 2011, 71, 1073-1089.	1.5	327
42	Integrin Activation Promotes Axon Growth on Inhibitory Chondroitin Sulfate Proteoglycans by Enhancing Integrin Signaling. Journal of Neuroscience, 2011, 31, 6289-6295.	1.7	144
43	6-Sulphated Chondroitins Have a Positive Influence on Axonal Regeneration. PLoS ONE, 2011, 6, e21499.	1.1	92
44	Schwann cell migration is integrinâ€dependent and inhibited by astrocyteâ€produced aggrecan. Glia, 2010, 58, 857-869.	2.5	85
45	<i>In vitro</i> modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. Journal of Neurochemistry, 2010, 114, 1447-1459.	2.1	127
46	Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain, 2010, 133, 2331-2347.	3.7	411
47	Chondroitinase ABC has a longâ€lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. Journal of Neurochemistry, 2008, 104, 400-408.	2.1	89
48	Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascinâ€R in the rat spinal cord. European Journal of Neuroscience, 2008, 27, 1373-1390.	1.2	166
49	Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regenerative Medicine, 2008, 3, 907-923.	0.8	43
50	Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restorative Neurology and Neuroscience, 2008, 26, 131-45.	0.4	137
51	The Extracellular Matrix in the Nervous System: The Good and the Bad Aspects. , 0, , .		7