
Alexandra E Porter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7084597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct imaging of single-walled carbon nanotubes in cells. Nature Nanotechnology, 2007, 2, 713-717.	31.5	539
2	The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14170-14175.	7.1	429
3	Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Science Translational Medicine, 2018, 10, .	12.4	111
4	Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific Reports, 2017, 7, 42871.	3.3	110
5	Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers. Journal of Membrane Science, 2016, 520, 465-476.	8.2	107
6	Unique metabolites protect earthworms against plant polyphenols. Nature Communications, 2015, 6, 7869.	12.8	71
7	Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale, 2013, 5, 9839.	5.6	56
8	Neutron Reflectivity and Performance of Polyamide Nanofilms for Water Desalination. Advanced Functional Materials, 2017, 27, 1701738.	14.9	47
9	Chemical speciation of nanoparticles surrounding metal-on-metal hips. Chemical Communications, 2012, 48, 8335.	4.1	45
10	Electronic structure influences on the formation of the solid electrolyte interphase. Energy and Environmental Science, 2020, 13, 4977-4989.	30.8	36
11	Inactivation, Clearance, and Functional Effects of Lung-Instilled Short and Long Silver Nanowires in Rats. ACS Nano, 2017, 11, 2652-2664.	14.6	30
12	Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers. Journal of Membrane Science, 2017, 534, 9-17.	8.2	29
13	Silver Nanowire Particle Reactivity with Human Monocyte-Derived Macrophage Cells: Intracellular Availability of Silver Governs Their Cytotoxicity. ACS Biomaterials Science and Engineering, 2017, 3, 2336-2347.	5.2	23
14	Roughening improves hydrogen embrittlement resistance of Ti-6Al-4V. Acta Materialia, 2021, 220, 117304.	7.9	23
15	Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure. Atmospheric Environment, 2017, 155, 85-96.	4.1	21
16	Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. Nanoscale, 2015, 7, 1534-1548.	5.6	19
17	Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. Journal of Microscopy, 2016, 261, 157-166.	1.8	15
18	Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy. Nanoscale, 2016, 8, 1849-1853.	5.6	13

#	Article	IF	CITATIONS
19	Spatially Resolved Dissolution and Speciation Changes of ZnO Nanorods during Short-Term <i>in Situ</i> Incubation in a Simulated Wastewater Environment. ACS Nano, 2019, 13, 11049-11061.	14.6	13
20	Nanoscale Chemical Heterogeneity in Aromatic Polyamide Membranes for Reverse Osmosis Applications. ACS Applied Materials & Interfaces, 2020, 12, 19890-19902.	8.0	12
21	Understanding the reactivity of CoCrMo-implant wear particles. Npj Materials Degradation, 2018, 2, .	5.8	11
22	Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity <i>In Vitro</i> . ACS Nano, 2020, 14, 6866-6877.	14.6	10
23	Correlative spectroscopy of silicates in mineralised nodules formed from osteoblasts. Nanoscale, 2013, 5, 7544.	5.6	9
24	Label-Free Time-of-Flight Secondary Ion Mass Spectrometry Imaging of Sulfur-Producing Enzymes inside Microglia Cells following Exposure to Silver Nanowires. Analytical Chemistry, 2019, 91, 11098-11107.	6.5	9
25	Nanoscale Chemical Imaging of Nanoparticles under Realâ€World Wastewater Treatment Conditions. Advanced Sustainable Systems, 2021, 5, 2100023.	5.3	8
26	A nanoscale analysis method to reveal oxygen exchange between environment, oxide, and electrodes in ReRAM devices. APL Materials, 2021, 9, .	5.1	6
27	Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling. Journal of Physics: Conference Series, 2014, 522, 012059.	0.4	5
28	Chemical Evolution of CoCrMo Wear Particles: An in Situ Characterization Study. Journal of Physical Chemistry C, 2019, 123, 9894-9901.	3.1	4
29	Analysis and imaging of biocidal agrochemicals using ToF-SIMS. Scientific Reports, 2017, 7, 10728.	3.3	3
30	On the role of surfaces and interfaces in electrochemical performance and long-term stability of nanostructured LSC thin film electrodes. Journal of Materials Chemistry A, 0, , .	10.3	2
31	ZnO Nanomaterials and Ionic Zn Partition within Wastewater Sludge Investigated by Isotopic Labeling. Global Challenges, 2022, 6, 2100091.	3.6	2
32	Reply to Comment on Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro. ACS Nano, 2021, 15, 15409-15417.	14.6	0