Jenny Graves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/708454/publications.pdf Version: 2024-02-01

IENNY COAVES

#	Article	IF	CITATIONS
1	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	124
2	Why sequence all eukaryotes?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	51
3	Sex-specific splicing of Z- and W-borne <i>nr5a1</i> alleles suggests sex determination is controlled by chromosome conformation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
4	Truncated <i>jarid2</i> and <i>kdm6b</i> transcripts are associated with temperature-induced sex reversal during development in a dragon lizard. Science Advances, 2022, 8, eabk0275.	10.3	6
5	Concerning an Article by Ehl et al.: False Premise Leads to False Conclusions. Sexual Development, 2021, 15, 286-288.	2.0	1
6	Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genetics, 2021, 17, e1009465.	3.5	25
7	Platypus and echidna genomes reveal mammalian biology and evolution. Nature, 2021, 592, 756-762.	27.8	85
8	Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proceedings of the United States of America, 2021, 118, .	7.1	84
9	Noncoding Genes on Sex Chromosomes and Their Function in Sex Determination, Dosage Compensation, Male Traits, and Diseases. Sexual Development, 2021, 15, 432-440.	2.0	3
10	Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Science Advances, 2019, 5, eaaw7006.	10.3	99
11	Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes, 2019, 10, 627.	2.4	79
12	Precision nomenclature for the new genomics. GigaScience, 2019, 8, .	6.4	23
13	Platypus Induced Pluripotent Stem Cells: The Unique Pluripotency Signature of a Monotreme. Stem Cells and Development, 2019, 28, 151-164.	2.1	12
14	Marsupial genomics meet marsupial reproduction. Reproduction, Fertility and Development, 2019, 31, 1181.	0.4	0
15	Landscape of DNA Methylation on the Marsupial X. Molecular Biology and Evolution, 2018, 35, 431-439.	8.9	15
16	Transcription-Associated Mutation Promotes RNA Complexity in Highly Expressed Genes—A Major New Source of Selectable Variation. Molecular Biology and Evolution, 2018, 35, 1104-1119.	8.9	5
17	Weird Animals, Sex, and Genome Evolution. Annual Review of Animal Biosciences, 2018, 6, 1-22.	7.4	6
18	Adaptation and conservation insights from the koala genome. Nature Genetics, 2018, 50, 1102-1111.	21.4	163

#	Article	IF	CITATIONS
19	The Methylome of Vertebrate Sex Chromosomes. Genes, 2018, 9, 230.	2.4	10
20	Differential intron retention in <i>Jumonji</i> chromatin modifier genes is implicated in reptile temperature-dependent sex determination. Science Advances, 2017, 3, e1700731.	10.3	111
21	Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements?. Journal of Heredity, 2017, 108, 94-105.	2.4	65
22	Geoffrey Bruce Sharman 1925–2015. Historical Records of Australian Science, 2017, 28, 183.	0.6	2
23	How Australian mammals contributed to our understanding of sex determination and sex chromosomes. Australian Journal of Zoology, 2016, 64, 267.	1.0	4
24	Why sex?. Lancet Diabetes and Endocrinology,the, 2016, 4, 727-729.	11.4	0
25	Did sex chromosome turnover promote divergence of the major mammal groups?. BioEssays, 2016, 38, 734-743.	2.5	59
26	Evolution of vertebrate sex chromosomes and dosage compensation. Nature Reviews Genetics, 2016, 17, 33-46.	16.3	159
27	Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma, 2016, 125, 111-123.	2.2	71
28	High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. GigaScience, 2015, 4, 45.	6.4	97
29	Twenty-five years of the sex-determining gene. Nature, 2015, 528, 343-344.	27.8	4
30	Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature, 2015, 523, 79-82.	27.8	282
31	Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. Journal of Genetics, 2015, 94, 567-574.	0.7	9
32	Non-Homologous Sex Chromosomes in Two Geckos (Gekkonidae: Gekkota) with Female Heterogamety. Cytogenetic and Genome Research, 2014, 143, 251-258.	1.1	21
33	Pathogenesis and Molecular Biology of a Transmissible Tumor in the Tasmanian Devil. Annual Review of Animal Biosciences, 2014, 2, 165-187.	7.4	21
34	Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Research, 2014, 22, 45-57.	2.2	50
35	The epigenetic sole of sex and dosage compensation. Nature Genetics, 2014, 46, 215-217.	21.4	11
36	Highly Differentiated ZW Sex Microchromosomes in the Australian Varanus Species Evolved through Rapid Amplification of Repetitive Sequences. PLoS ONE, 2014, 9, e95226.	2.5	48

#	Article	IF	CITATIONS
37	Marsupials in the Age of Genomics. Annual Review of Genomics and Human Genetics, 2013, 14, 393-420.	6.2	30
38	Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genomics, 2013, 14, 899.	2.8	41
39	Reconstruction of the ancestral marsupial karyotype from comparative gene maps. BMC Evolutionary Biology, 2013, 13, 258.	3.2	30
40	Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics, 2013, 65, 115-124.	2.4	75
41	How to evolve new vertebrate sex determining genes. Developmental Dynamics, 2013, 242, 354-359.	1.8	55
42	Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals. PLoS Genetics, 2013, 9, e1003635.	3.5	26
43	Kangaroo gene mapping and sequencing: insights into mammalian genome evolution. Australian Journal of Zoology, 2013, 61, 4.	1.0	2
44	In Vivo Function and Evolution of the Eutherian-Specific Pluripotency Marker UTF1. PLoS ONE, 2013, 8, e68119.	2.5	17
45	Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour. PLoS Genetics, 2012, 8, e1002483.	3.5	92
46	Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution. Genome Research, 2012, 22, 498-507.	5.5	32
47	Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Research, 2012, 20, 7-19.	2.2	115
48	Foreword: sex and sex chromosomes—new clues from nonmodel species. Chromosome Research, 2012, 20, 1-5.	2.2	6
49	Extreme Telomere Length Dimorphism in the Tasmanian Devil and Related Marsupials Suggests Parental Control of Telomere Length. PLoS ONE, 2012, 7, e46195.	2.5	27
50	Evolution from XIST-Independent to XIST-Controlled X-Chromosome Inactivation: Epigenetic Modifications in Distantly Related Mammals. PLoS ONE, 2011, 6, e19040.	2.5	61
51	A second-generation anchored genetic linkage map of the tammar wallaby (Macropus eugenii). BMC Genetics, 2011, 12, 72.	2.7	15
52	A first-generation integrated tammar wallaby map and its use in creating a tammar wallaby first-generation virtual genome map. BMC Genomics, 2011, 12, 422.	2.8	19
53	Evolutionary transitions between mechanisms of sex determination in vertebrates. Biology Letters, 2011, 7, 443-448.	2.3	92
54	The Tasmanian Devil Transcriptome Reveals Schwann Cell Origins of a Clonally Transmissible Cancer. Science, 2010, 327, 84-87.	12.6	222

#	Article	IF	CITATIONS
55	Non-homologous sex chromosomes of birds and snakes share repetitive sequences. Chromosome Research, 2010, 18, 787-800.	2.2	79
56	Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution. Chromosome Research, 2010, 18, 897-907.	2.2	12
57	Are homologies in vertebrate sex determination due to shared ancestry or to limited options?. Genome Biology, 2010, 11, 205.	9.6	198
58	Compact but Complex – The Marsupial Y Chromosome. , 2010, , 207-228.		1
59	The Olfactory Receptor Gene Family of Marsupials. , 2010, , 435-456.		2
60	Marsupial Genetics Reveals Insights into Evolution of Mammalian X Chromosome Inactivation. , 2010, , 259-280.		0
61	The Evolution of Genomic Imprinting $\hat{a} \in $ A Marsupial Perspective. , 2010, , 233-257.		2
62	Replication asynchrony and differential condensation of X chromosomes in female platypus (Ornithorhynchus anatinus). Reproduction, Fertility and Development, 2009, 21, 952.	0.4	10
63	Recombination and Nucleotide Diversity in the Sex Chromosomal Pseudoautosomal Region of the Emu, Dromaius novaehollandiae. Journal of Heredity, 2009, 100, 125-136.	2.4	24
64	Does the human X contain a third evolutionary block? Origin of genes on human Xp11 and Xq28. Genome Research, 2009, 19, 1350-1360.	5.5	13
65	Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards. Chromosome Research, 2009, 17, 91-98.	2.2	77
66	Specific patterns of histone marks accompany X chromosome inactivation in a marsupial. Chromosome Research, 2009, 17, 115-26.	2.2	48
67	Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Research, 2009, 17, 671-685.	2.2	56
68	Physical mapping of the elephant X chromosome: conservation of gene order over 105Âmillion years. Chromosome Research, 2009, 17, 917-926.	2.2	62
69	Z and W sex chromosomes in the cane toad (Bufo marinus). Chromosome Research, 2009, 17, 1015-1024.	2.2	35
70	The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Research, 2009, 17, 965-973.	2.2	45
71	Birds do it with a Z gene. Nature, 2009, 461, 177-178.	27.8	14
72	Evolution of Genomic Imprinting: Insights from Marsupials and Monotremes. Annual Review of Genomics and Human Genetics, 2009, 10, 241-262.	6.2	141

#	Article	IF	CITATIONS
73	Monotreme sex chromosomes - implications for the evolution of amniote sex chromosomes. Reproduction, Fertility and Development, 2009, 21, 943.	0.4	9
74	An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: A new piece in the puzzle of sex chromosome evolution in turtles. Chromosome Research, 2008, 16, 815-825.	2.2	44
75	Physical map of two tammar wallaby chromosomes: A strategy for mapping in non-model mammals. Chromosome Research, 2008, 16, 1159-1175.	2.2	63
76	A simple non-invasive protocol to establish primary cell lines from tail and toe explants for cytogenetic studies in Australian dragon lizards (Squamata: Agamidae). Cytotechnology, 2008, 58, 135-139.	1.6	24
77	Genome analysis of the platypus reveals unique signatures of evolution. Nature, 2008, 453, 175-183.	27.8	657
78	Origin and evolution of candidate mental retardation genes on the human X chromosome (MRX). BMC Genomics, 2008, 9, 65.	2.8	13
79	Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Research, 2008, 18, 965-973.	5.5	268
80	Weird Animal Genomes and the Evolution of Vertebrate Sex and Sex Chromosomes. Annual Review of Genetics, 2008, 42, 565-586.	7.6	239
81	Cone visual pigments of monotremes: Filling the phylogenetic gap. Visual Neuroscience, 2008, 25, 257-264.	1.0	60
82	Characterization, chromosomal location, and genomic neighborhood of a ratite ortholog of a gene with gonadal expression in mammals. Integrative and Comparative Biology, 2008, 48, 505-511.	2.0	3
83	The Status of Dosage Compensation in the Multiple X Chromosomes of the Platypus. PLoS Genetics, 2008, 4, e1000140.	3.5	102
84	The Evolution of Epigenetic Regulators CTCF and BORIS/CTCFL in Amniotes. PLoS Genetics, 2008, 4, e1000169.	3.5	72
85	Evolution of the Testis-Determining Gene-The Rise and Fall of SRY. Novartis Foundation Symposium, 2008, , 86-101.	1.1	23
86	Identification of Cryptic Sex Chromosomes and Isolation of X- and Y-Borne Genes. Methods in Molecular Biology, 2008, 422, 239-251.	0.9	4
87	Retrotransposon Silencing by DNA Methylation Can Drive Mammalian Genomic Imprinting. PLoS Genetics, 2007, 3, e55.	3.5	181
88	Frequency of Cancer Genes on the Chicken Z Chromosome and Its Human Homologues: Implications for Sex Chromosome Evolution. Comparative and Functional Genomics, 2007, 2007, 1-8.	2.0	2
89	Mammalian sex—Origin and evolution of the Y chromosome and SRY. Seminars in Cell and Developmental Biology, 2007, 18, 389-400.	5.0	132
90	DMRT gene cluster analysis in the platypus: New insights into genomic organization and regulatory regions. Genomics, 2007, 89, 10-21.	2.9	52

#	Article	IF	CITATIONS
91	Temperature Sex Reversal Implies Sex Gene Dosage in a Reptile. Science, 2007, 316, 411-411.	12.6	249
92	Does gene dosage really matter?. Journal of Biology, 2007, 6, 1.	2.7	32
93	Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature, 2007, 447, 167-177.	27.8	661
94	Chromosome-specific microsatellites from the tammar wallaby X chromosome and chromosome 2. Molecular Ecology Notes, 2007, 7, 1063-1066.	1.7	6
95	The evolution of imprinting: chromosomal mapping of orthologues of mammalian imprinted domains in monotreme and marsupial mammals. BMC Evolutionary Biology, 2007, 7, 157.	3.2	38
96	Construction and evolution of imprinted loci in mammals. Trends in Genetics, 2007, 23, 440-448.	6.7	91
97	The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Research, 2007, 15, 147-161.	2.2	95
98	A microsatellite-based, physically anchored linkage map for the gray, short-tailed Opossum (Monodelphis domestica). Chromosome Research, 2007, 15, 269-81.	2.2	31
99	Characterizing the chromosomes of the platypus (Ornithorhynchus anatinus). Chromosome Research, 2007, 15, 961-974.	2.2	18
100	Core-SINE blocks comprise a large fraction of monotreme genomes; implications for vertebrate chromosome evolution. Chromosome Research, 2007, 15, 975-984.	2.2	6
101	Sex Chromosome Specialization and Degeneration in Mammals. Cell, 2006, 124, 901-914.	28.9	509
102	How the gene content of human sex chromosomes evolved. Current Opinion in Genetics and Development, 2006, 16, 219-224.	3.3	59
103	Y chromosome microsatellite markers identified from the tammar wallaby (Macropus eugenii) and their amplification in three other macropod species. Molecular Ecology Notes, 2006, 6, 1202-1204.	1.7	17
104	The mammalian αD-globin gene lineage and a new model for the molecular evolution of α-globin gene clusters at the stem of the mammalian radiation. Molecular Phylogenetics and Evolution, 2006, 38, 439-448.	2.7	25
105	An XX/XY sex microchromosome system in a freshwater turtle, Chelodina longicollis (Testudines:) Tj ETQq1 1 0.7	'84314 rgl 2.2	BT /Qverlock
106	How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals. Chromosoma, 2006, 115, 75-88.	2.2	60
107	Relationships between Vertebrate ZW and XY Sex Chromosome Systems. Current Biology, 2006, 16, R736-R743.	3.9	214
108	Evolution and comparative analysis of the MHC Class III inflammatory region. BMC Genomics, 2006, 7, 281.	2.8	54

#	Article	IF	CITATIONS
109	Reconstructing an Ancestral Mammalian Immune Supercomplex from a Marsupial Major Histocompatibility Complex. PLoS Biology, 2006, 4, e46.	5.6	150
110	Recent Assembly of an Imprinted Domain from Non-Imprinted Components. PLoS Genetics, 2006, 2, e182.	3.5	84
111	The X and Y Chromosomes Assemble into H2A.Z, Containing Facultative Heterochromatin, following Meiosis. Molecular and Cellular Biology, 2006, 26, 5394-5405.	2.3	111
112	RBMXgene is essential for brain development in zebrafish. Developmental Dynamics, 2005, 234, 682-688.	1.8	46
113	Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus) Tj ETQq1 1 0.7 401-410.	784314 rg 2.2	BT /Overlock 48
114	Characterizing the chromosomes of the Australian model marsupial Macropus eugenii (tammar) Tj ETQq0 0 0 rgl	BT /Overlo 2.2	ck 10 Tf 50 5
115	Isolation, X location and activity of the marsupial homologue of SLC16A2, an XIST-flanking gene in eutherian mammals. Chromosome Research, 2005, 13, 687-698.	2.2	16
116	The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Research, 2005, 13, 763-776.	2.2	194
117	GENOMICS: Recycling the Y Chromosome. Science, 2005, 307, 50-51.	12.6	29
118	The prion protein gene: Identifying regulatory signals using marsupial sequence. Gene, 2005, 349, 121-134.	2.2	31
119	Evolution of Vertebrate Genes Related to Prion and Shadoo Proteins—Clues from Comparative Genomic Analysis. Molecular Biology and Evolution, 2004, 21, 2210-2231.	8.9	50
120	Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: Sequence and inferred spectral properties. Visual Neuroscience, 2004, 21, 223-229.	1.0	29
121	In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature, 2004, 432, 913-917.	27.8	252
122	TSPY, the Candidate Gonadoblastoma Gene on the Human Y Chromosome, has a Widely Expressed Homologue on the X - Implications for Y Chromosome Evolution. Chromosome Research, 2004, 12, 345-356.	2.2	63
123	Molecular characterization and evolution of X and Y-borne ATRX homologues in American marsupials. Chromosome Research, 2004, 12, 795-804.	2.2	12
124	Universal Fast Walking Applied to cDNA. Preparative Biochemistry and Biotechnology, 2004, 34, 123-133.	1.9	3
125	A platypus' eye view of the mammalian genome. Current Opinion in Genetics and Development, 2004, 14, 642-649.	3.3	30
126	Comparative analysis of ATRX, a chromatin remodeling protein. Gene, 2004, 339, 39-48.	2.2	16

#	Article	IF	CITATIONS
127	ATRX and sex differentiation. Trends in Endocrinology and Metabolism, 2004, 15, 339-344.	7.1	40
128	The degenerate Y chromosome – can conversion save it?. Reproduction, Fertility and Development, 2004, 16, 527.	0.4	31
129	Mammalian Sex Chromosome Evolution $\hat{a} \in$ " The Rise and Fall of the Y Chromosome. , 2004, , 3-14.		1
130	Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Research, 2003, 11, 503-512.	2.2	49
131	The monotreme genome: a patchwork of reptile, mammal and unique features?. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 136, 867-881.	1.8	39
132	The kangaroo genome. EMBO Reports, 2003, 4, 143-147.	4.5	41
133	Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene, 2003, 314, 89-102.	2.2	101
134	Comparative and functional analyses of LYL1 loci establish marsupial sequences as a model for phylogenetic footprintingâ~† â~†Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession No. AL731834 Genomics, 2003, 81, 249-259.	2.9	42
135	Complex Events in the Evolution of the Human Pseudoautosomal Region 2 (PAR2). Genome Research, 2003, 13, 281-286.	5.5	63
136	The Tree of Life: View from a Twig. Science, 2003, 300, 1621-1621.	12.6	3
137	3′ RACE Walking along a Large cDNA Employing Tiered Suppression PCR. BioTechniques, 2003, 34, 750-756.	1.8	12
138	The rise and fall of SRY. Trends in Genetics, 2002, 18, 259-264.	6.7	135
139	Marsupial genetics and genomics. Trends in Genetics, 2002, 18, 517-521.	6.7	55
140	SOX9 has both conserved and novel roles in marsupial sexual differentiation. Genesis, 2002, 33, 131-139.	1.6	28
141	Human spermatozoa: The future of sex. Nature, 2002, 415, 963-963.	27.8	123
142	From brain determination to testis determination: evolution of the mammalian sex-determining gene. Reproduction, Fertility and Development, 2001, 13, 665.	0.4	26
143	Characterization of steroidogenic factor 1 during sexual differentiation in a marsupial. Gene, 2001, 277, 209-219.	2.2	13
144	Expression and conservation of processed copies of the RBMX gene. Mammalian Genome, 2001, 12, 538-545.	2.2	50

#	Article	IF	CITATIONS
145	Sex from W to Z: Evolution of vertebrate sex chromosomes and sex determining genes. The Journal of Experimental Zoology, 2001, 290, 449-462.	1.4	112
146	The X?a sexy chromosome. BioEssays, 2001, 23, 1091-1094.	2.5	19
147	Did genomic imprinting and X chromosome inactivation arise from stochastic expression?. Trends in Genetics, 2001, 17, 136-141.	6.7	80
148	Sex chromosomes and sex-determining genes: insights from marsupials and monotremes. Exs, 2001, , 71-95.	1.4	11
149	Absence of SOX3 in the developing marsupial gonad is not consistent with a conserved role in mammalian sex determination. Genesis, 2000, 27, 145-152.	1.6	32
150	Human Y Chromosome, Sex Determination, and Spermatogenesis—A Feminist View1. Biology of Reproduction, 2000, 63, 667-676.	2.7	42
151	The Ancient Source of a Distinct Gene Family Encoding Proteins Featuring RING and C3H Zinc-Finger Motifs with Abundant Expression in Developing Brain and Nervous System. Genomics, 2000, 66, 76-86.	2.9	95
152	Temperature-dependent sex determination in the American alligator: expression of SF1, WT1 and DAX1 during gonadogenesis. Gene, 2000, 241, 223-232.	2.2	100
153	Comparative Genomics of Vertebrates and the Evolution of Sex Chromosomes. , 2000, , 153-205.		9
154	The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nature Genetics, 1999, 22, 223-224.	21.4	132
155	reply: Global methylation in eutherian hybrids. Nature, 1999, 401, 132-132.	27.8	4
156	Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Research, 1999, 7, 289-295.	2.2	233
157	Cross-species chromosome painting between human and marsupial directly demonstrates the ancient region of the mammalian X. Mammalian Genome, 1999, 10, 1115-1116.	2.2	76
158	Isolation and characterization of marsupial IL5 genes. Immunogenetics, 1999, 49, 942-948.	2.4	19
159	Temperature-dependent sex determination in the american alligator:AMH precedesSOX9 expression. Developmental Dynamics, 1999, 216, 411-419.	1.8	128
160	The Promise of Comparative Genomics in Mammals. Science, 1999, 286, 458-481.	12.6	423
161	Temperature-dependent sex determination in the american alligator: AMH precedes SOX9 expression. , 1999, 216, 411.		2
162	Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature, 1998, 393, 68-72.	27.8	448

#	Article	IF	CITATIONS
163	Interactions between SRY and SOX genes in mammalian sex determination. BioEssays, 1998, 20, 264-269.	2.5	101
164	Evolution of the mammalian Y chromosome and sex-determining genes. The Journal of Experimental Zoology, 1998, 281, 472-481.	1.4	75
165	Evolution of mammalian HNRPG and its relationship with the putative azoospermia factor RBM. Mammalian Genome, 1998, 9, 168-170.	2.2	16
166	CSF2RA, ANT3, and STS are autosomal in marsupials: implications for the origin of the pseudoautosomal region of mammalian sex chromosomes. Mammalian Genome, 1998, 9, 373-376.	2.2	26
167	Background and Overview of Comparative Genomics. ILAR Journal, 1998, 39, 48-65.	1.8	15
168	The origin and loss of the ubiquitin activating enzyme gene on the mammalian Y chromosome. Human Molecular Genetics, 1998, 7, 429-434.	2.9	41
169	Chromosome Painting in Marsupials. ILAR Journal, 1998, 39, 92-95.	1.8	6
170	Gene Maps of Monotremes (Mammalian Subclass Prototheria). ILAR Journal, 1998, 39, 225-228.	1.8	5
171	Evolution of the mammalian Y chromosome and sexâ€determining genes. The Journal of Experimental Zoology, 1998, 281, 472-481.	1.4	6
172	The Candidate Sex-ReversingDAX1Gene Is Autosomal in Marsupials: Implications for the Evolution of Sex Determination in Mammals. Genomics, 1997, 41, 422-426.	2.9	35
173	A human candidate spermatogenesis gene, RBM1, is conserved and amplified on the marsupial Y chromosome. Nature Genetics, 1997, 15, 131-136.	21.4	114
174	Two uses for old SOX. Nature Genetics, 1997, 16, 114-115.	21.4	19
175	Shared DNA sequences between the X and Y chromosomes in the tammar wallaby - evidence for independent additions to eutherian and marsupial sex chromosomes. Chromosoma, 1997, 106, 94-98.	2.2	50
176	MAMMALS THAT BREAK THE RULES: Genetics of Marsupials and Monotremes. Annual Review of Genetics, 1996, 30, 233-260.	7.6	157
177	Comparative Mapping Identifies the Fusion Point of an Ancient Mammalian X-Autosomal Rearrangement. Genomics, 1996, 35, 66-70.	2.9	60
178	Breaking laws and obeying rules. Nature Genetics, 1996, 12, 121-121.	21.4	3
179	The origin and function of the mammalian Y chromosome and Yâ€borne genes – an evolving understanding. BioEssays, 1995, 17, 311-320.	2.5	375
180	Absence of Sry in species of the vole Ellobius. Nature Genetics, 1995, 11, 117-118.	21.4	211

#	Article	IF	CITATIONS
181	Widespread expression of the testis–determining gene SRY in a marsupial. Nature Genetics, 1995, 11, 347-349.	21.4	94
182	Evolution of Mammalian Sex Chromosomes and Sex-Determining Genes. International Review of Cytology, 1994, 154, 191-259.	6.2	39
183	The marsupial MHC: The Tammar Wallaby, Macropus eugenii, contains an expressed DNA-like gene on chromosome 1. Journal of Molecular Evolution, 1994, 38, 496-505.	1.8	32
184	Sex Determination in Marsupials and Monotremes. , 1994, , 143-170.		2
185	Cloning and characterization of the platypus mitochondrial genome. Journal of Molecular Evolution, 1994, 39, 200-205.	1.8	10
186	No EXSCEUS. Nature Genetics, 1993, 3, 282-282.	21.4	0
187	Sequences Homologous to the Human X- and Y-Borne Zinc Finger Protein Genes (ZFX/Y) Are Autosomal in Monotreme Mammals. Genomics, 1993, 15, 317-322.	2.9	18
188	A eutherian X-linked gene, PDHA1, is autosomal in marsupials:A model for the evolution of a second, testis-specific variant in eutherian mammals. Genomics, 1993, 18, 636-642.	2.9	29
189	The evolution of human chromosome 21: Evidence from in situ hybridization in marsupials and a monotreme. Genomics, 1992, 13, 1119-1124.	2.9	24
190	Autosomal localization of the amelogenin gene in monotremes and marsupials: Implications for mammalian sex chromosome evolution. Genomics, 1992, 14, 785-789.	2.9	28
191	Mapping human X-linked genes in the phalangerid marsupial Trichosurus vulpecula. Genomics, 1992, 14, 302-308.	2.9	8
192	Gene mapping studies confirm the homology between the platypus X and echidna X1 chromosomes and identify a conserved ancestral monotreme X chromosome. Chromosoma, 1992, 101, 596-601.	2.2	11
193	Marsupial Y chromosome encodes a homologue of the mouse Y-linked candidate spermatogenesis gene Ube1y. Nature, 1992, 359, 528-531.	27.8	44
194	Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature, 1992, 359, 531-533.	27.8	224
195	Mammalian genome evolution: New clues from comparisons of eutherians, marsupials and monotremes. Comparative Biochemistry and Physiology A, Comparative Physiology, 1991, 99, 5-11.	0.6	15
196	Genes on the short arm of the human X chromosome are not shared with the marsupial X. Genomics, 1991, 11, 339-345.	2.9	48
197	Gene mapping in marsupials: Detection of an ancient autosomal gene cluster. Genomics, 1991, 9, 581-586.	2.9	15
198	The X chromosome of marsupials shares a highly conserved region with eutherians. Genomics, 1991, 9, 598-604.	2.9	36

#	Article	IF	CITATIONS
199	Measurement of Genetic Variation in Endangered Populations: Bandicoots (Marsupialia: Peramelidae) as an Example. Conservation Biology, 1991, 5, 103-108.	4.7	26
200	Mammalian sex chromosomes: Evolution of organization and function. Chromosoma, 1991, 101, 63-68.	2.2	96
201	Genomic instability in mammalian cell hybrids. IV. Is mutation frequency elevated in hybrid cells?. Journal of Genetics, 1990, 69, 79-86.	0.7	0
202	Use of a cell hybrid test system to demonstrate that benomyl induces aneuploidy and polyploidy. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1990, 242, 329-335.	1.2	34
203	Chromosome segregation from cell hybrids. VI. Centromeres of both parental chromosome sets stain with antikinetochore antibody. Genome, 1989, 32, 271-274.	2.0	4
204	Suppression of position-effect variegation inDrosophila melanogaster by fatty acids and dimethylsulphoxide: implications for the mechanism of position-effect variegation. Journal of Genetics, 1989, 68, 1-8.	0.7	2
205	Karyotypic conservation in the mammalian order monotremata (subclass Prototheria). Chromosoma, 1988, 96, 231-247.	2.2	40
206	Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature, 1988, 336, 780-783.	27.8	182
207	Genome instability in interspecific cell hybrids I. Unstable expression of genes in divergent cell hybrids. Journal of Genetics, 1988, 67, 9-22.	0.7	7
208	Genomic instability in interspecific cell hybrids III. Repression of Colcemid resistance in hybrids suggests preferential β-tubulin expression. Journal of Genetics, 1988, 67, 87-94.	0.7	0
209	Chromosome segregation from cell hybrids. V. Does segregation result from asynchronous centromere separation?. Genome, 1988, 30, 124-128.	2.0	10
210	The relationship between position and expression of genes on the kangaroo <i>X</i> chromosome suggests a tissue-specific spread of inactivation from a single control site. Genetical Research, 1988, 51, 103-109.	0.9	21
211	A correlation between development time and variegated position effect in Drosophila melanogaster. Genetical Research, 1988, 52, 119-123.	0.9	15
212	Chromosome segregation from cell hybrids. III. Segregation is independent of spindle constitution. Genome, 1987, 29, 528-531.	2.0	10
213	Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes. Genetical Research, 1987, 50, 131-136.	0.9	36
214	The evolution of mammalian sex chromosomes and dosage compensation: clues from marsupials and monotremes. Trends in Genetics, 1987, 3, 252-256.	6.7	49
215	Mammalian X chromosome inactivation: Testing the hypothesis of transcriptional control. Somatic Cell and Molecular Genetics, 1986, 12, 275-280.	0.7	53
216	Chromosome segregation from cell hybrids.II. Do differences in parental cell growth rates and phase times determine direction of loss?. Genome, 1986, 28, 735-743.	0.7	4

#	Article	IF	CITATIONS
217	Chromosome segregation from cell hybrids. I. The effect of parent cell ploidy on segregation from mouse – Chinese hamster hybrids. Genome, 1984, 26, 557-563.	0.7	13

Two monotreme cell lines, derived from female platypuses (Ornithorhynchus anatinus; Monotremata,) Tj ETQq0 0 0 rg BT /Overlock 10 T 19

219	Control of DNA synthesis in polyploid mammalian cells. Journal of Cellular Physiology, 1984, 121, 409-414.	4.1	22
220	Gene mapping in marsupials and monotremes. Chromosoma, 1984, 91, 20-27.	2.2	29
221	Gene amplification in a mouse embryo? Double minutes in cell lines independently derived from a Mus musculus x M. caroli fetus. Chromosoma, 1984, 89, 138-142.	2.2	12
222	Hybrids between irradiated and unirradiated mammalian cells: Survival and chromosome segregation. Journal of Cellular Physiology, 1983, 116, 98-102.	4.1	11
223	Evidence for an indirect effect of radiation on mammalian chromosomes. II. UV-induced isochromosome formation in cell hybrids. Cancer Genetics and Cytogenetics, 1983, 8, 297-305.	1.0	3
224	Evidence for an indirect effect of radiation on mammalian chromosomes. III. UV- and x-ray-induced sister chromatid exchanges in heterokaryons. Cancer Genetics and Cytogenetics, 1983, 8, 307-318.	1.0	7
225	X-chromosome activity in heterokaryons and hybrids between mouse fibroblasts and teratocarcinoma stem cells. Experimental Cell Research, 1982, 141, 87-97.	2.6	31
226	5-Azacytidine-induced re-expression of alleles on the inactive X chromosome in a hybrid mouse cell line. Experimental Cell Research, 1982, 141, 99-105.	2.6	90
227	Can 3H-uridine-induced sister chromatid exchange be used as a measure of transcriptional activity of chromosomes?. Chromosoma, 1982, 87, 469-476.	2.2	2
228	Changes in the cell cycle during culture of mouse-Chinese hamster cell hybrids. Journal of Cellular Physiology, 1980, 102, 209-216.	4.1	5
229	Marsupial-mouse cell hybrids containing fragments of the marsupial X chromosome. Somatic Cell Genetics, 1979, 5, 481-489.	2.7	29
230	Use of enzyme-deficient cell lines as feeder layers. In Vitro, 1978, 14, 506-509.	1.2	3
231	DNA synthesis in heterokaryons formed by fusion of mammalian cells from different species. Experimental Cell Research, 1972, 72, 393-403.	2.6	45
232	Cell cycles and chromosome replication patterns in interspecific somatic hybrids. Experimental Cell Research, 1972, 73, 81-94.	2.6	48
233	DNA synthesis in chromosomes of cultured leucocytes from two marsupial species. Experimental Cell Research, 1967, 46, 37-57.	2.6	49
234	What marsupials can do for genetics and what genetics can do for marsupials. , 0, , 22-82.		2