Mara Olivares-MarÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7084109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Collaborative online international learning: A way to develop students' engineering capabilities and awareness to become global citizens. International Journal of Mechanical Engineering Education, 2022, 50, 89-104.	0.6	8
2	A Stable Highâ€Capacity Lithiumâ€Ion Battery Using a Biomassâ€Derived Sulfurâ€Carbon Cathode and Lithiated Silicon Anode. ChemSusChem, 2021, 14, 3333-3343.	3.6	16
3	Organic Polyradicals as Redox Mediators: Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 45968-45975.	4.0	3
4	Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. Journal of Colloid and Interface Science, 2020, 573, 396-408.	5.0	67
5	Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization. Molecules, 2019, 24, 3996.	1.7	6
6	Combined Influence of Meso- and Macroporosity of Soft-Hard Templated Carbon Electrodes on the Performance of Li-O2 Cells with Different Configurations. Nanomaterials, 2019, 9, 810.	1.9	9
7	Hydrocarbonization. Does It Worth to Be Called a Pretreatment?. , 2019, , .		1
8	Method for promoting in-situ hydrochar porosity in hydrothermal carbonization of almond shells with air activation. Journal of Supercritical Fluids, 2018, 138, 187-192.	1.6	26
9	Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Research, 2018, 11, 89-100.	5.8	88
10	Tailoring oxygen redox reactions in ionic liquid based Li/O2 batteries by means of the Li+ dopant concentration. Sustainable Energy and Fuels, 2018, 2, 118-124.	2.5	4
11	Potassium Salts as Electrolyte Additives in Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 3822-3829.	1.5	28
12	Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy. Journal of Power Sources, 2017, 359, 234-241.	4.0	16
13	Preparation and characterization of ZrO2/Y2O3/Al2O3-based microstructured multilayer sol–gel coatings. Ceramics International, 2017, 43, 14210-14217.	2.3	5
14	Influence of texture in hybrid carbon-phosphomolybdic acid materials on their performance as electrodes in supercapacitors. Carbon, 2017, 111, 74-82.	5.4	18
15	Studies of Lithium-Oxygen Battery Electrodes by Energy- Dependent Full-Field Transmission Soft X-Ray Microscopy. , 2017, , .		2
16	Massâ€ŧransport Control on the Discharge Mechanism in Li–O ₂ Batteries Using Carbon Cathodes with Varied Porosity. ChemSusChem, 2015, 8, 3465-3471.	3.6	13
17	Operando UV-visible spectroscopy evidence of the reactions of iodide as redox mediator in Li–O2 batteries. Electrochemistry Communications, 2015, 59, 24-27.	2.3	32
18	Spatial Distributions of Discharged Products of Lithium–Oxygen Batteries Revealed by Synchrotron X-ray Transmission Microscopy. Nano Letters, 2015, 15, 6932-6938.	4.5	57

#	Article	IF	CITATIONS
19	Organic radicals for the enhancement of oxygen reduction reaction in Li–O ₂ batteries. Chemical Communications, 2015, 51, 17623-17626.	2.2	35
20	Simple Method to Relate Experimental Pore Size Distribution and Discharge Capacity in Cathodes for Li/O2 Batteries. Journal of Physical Chemistry C, 2014, 118, 20772-20783.	1.5	31
21	Effects of architecture on the electrochemistry of binder-free inverse opal carbons as Li–air cathodes in an ionic liquid-based electrolyte. Journal of Materials Chemistry A, 2013, 1, 14270.	5.2	23
22	Influence of the operation conditions on CO2 capture by CaO-derived sorbents prepared from synthetic CaCO3. Chemosphere, 2013, 93, 2148-2158.	4.2	15
23	CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. International Journal of Greenhouse Gas Control, 2013, 17, 366-375.	2.3	107
24	Influence of morphology, porosity and crystal structure of CaCO3 precursors on the CO2 capture performance of CaO-derived sorbents. Chemical Engineering Journal, 2013, 217, 71-81.	6.6	42
25	Preparation of Micropore-Containing Adsorbents from Kenaf Fibers and Their Use in Mercury Removal from Aqueous Solution. Journal of Natural Fibers, 2012, 9, 98-116.	1.7	3
26	Development of adsorbents for CO ₂ capture from waste materials: a review. , 2012, 2, 20-35.		120
27	Development and characterization of carbon-honeycomb monoliths from kenaf natural fibers: A preliminary study. Industrial Crops and Products, 2012, 35, 105-110.	2.5	23
28	Preparation of activated carbon from cherry stones by physical activation in air. Influence of the chemical carbonisation with H2SO4. Journal of Analytical and Applied Pyrolysis, 2012, 94, 131-137.	2.6	89
29	The influence of the precursor and synthesis method on the CO2 capture capacity of carpet waste-based sorbents. Journal of Environmental Management, 2011, 92, 2810-2817.	3.8	30
30	Development of regenerable sorbents from abundant wastes for capture of CO2. Energy Procedia, 2011, 4, 1118-1124.	1.8	16
31	Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent. Fuel Processing Technology, 2011, 92, 322-329.	3.7	42
32	Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures. International Journal of Greenhouse Gas Control, 2010, 4, 623-629.	2.3	167
33	Use of small-amplitude oscillatory shear rheometry to study the flow properties of pure and potassium-doped Li2ZrO3 sorbents during the sorption of CO2 at high temperatures. Separation and Purification Technology, 2010, 73, 415-420.	3.9	31
34	Improving the Performance of Biomass-Derived Carbons in Li-Ion Batteries by Controlling the Lithium Insertion Process. Journal of the Electrochemical Society, 2010, 157, A791.	1.3	84
35	Suppressing Irreversible Capacity in Low Cost Disordered Carbons for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2009, 12, A167.	2.2	11
36	Cherry stones as precursor of activated carbons for supercapacitors. Materials Chemistry and Physics, 2009, 114, 323-327.	2.0	180

MARA OLIVARES-MARÃN

#	Article	IF	CITATIONS
37	The development of an activated carbon from cherry stones and its use in the removal of ochratoxin A from red wine. Food Control, 2009, 20, 298-303.	2.8	42
38	Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II). Talanta, 2009, 80, 631-635.	2.9	135
39	Adsorption of mercury from single and multicomponent metal systems on activated carbon developed from cherry stones. Adsorption, 2008, 14, 601-610.	1.4	12
40	A Novel Cell Design for the Improved Stripping Voltammetric Detection of Zn(II), Cd(II), and Pb(II) on Commercial Screenâ€Printed Strips by Bismuth Codeposition in Stirred Solutions. Electroanalysis, 2008, 20, 2608-2613.	1.5	54
41	Porous Structure of Activated Carbon Prepared from Cherry Stones by Chemical Activation with Phosphoric Acid. Energy & Fuels, 2007, 21, 2942-2949.	2.5	57
42	Thermal behaviour of lignocellulosic material in the presence of phosphoric acid. Influence of the acid content in the initial solution. Carbon, 2006, 44, 2347-2350.	5.4	64
43	Preparation and textural characterisation of activated carbon from vine shoots (Vitis vinifera) by H3PO4—Chemical activation. Applied Surface Science, 2006, 252, 5961-5966.	3.1	69
44	Study of the pore size distribution and fractal dimension of HNO3-treated activated carbons. Applied Surface Science, 2006, 252, 5972-5975.	3.1	50
45	Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Applied Surface Science, 2006, 252, 5967-5971.	3.1	165
46	Preparation of activated carbons from cherry stones by activation with potassium hydroxide. Applied Surface Science, 2006, 252, 5980-5983.	3.1	81
47	Development of Activated Carbon Using Vine Shoots (Vitis Vinifera) and Its Use for Wine Treatment. Journal of Agricultural and Food Chemistry, 2005, 53, 644-650.	2.4	23