
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7083932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrastructure of Organohalide-Respiring <i>Dehalococcoidia</i> Revealed by Cryo-Electron Tomography. Applied and Environmental Microbiology, 2022, 88, AEM0190621.	3.1	6
2	Quantitative Proteomics and Quantitative PCR as Predictors of <i>cis</i> -1,2-Dichlorethene and Vinyl Chloride Reductive Dechlorination Rates in Bioaugmented Aquifer Microcosms. ACS ES&T Engineering, 2022, 2, 43-53.	7.6	5
3	Identification and widespread environmental distribution of a gene cassette implicated in anaerobic dichloromethane degradation. Global Change Biology, 2022, 28, 2396-2412.	9.5	7
4	<i>Geobacter</i> sp. Strain IAE Dihaloeliminates 1,1,2-Trichloroethane and 1,2-Dichloroethane. Environmental Science & amp; Technology, 2022, 56, 3430-3440.	10.0	13
5	<i>Pseudomonas</i> sp. Strain 273 Incorporates Organofluorine into the Lipid Bilayer during Growth with Fluorinated Alkanes. Environmental Science & amp; Technology, 2022, 56, 8155-8166.	10.0	10
6	Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, " <i>Candidatus</i> Dehalogenimonas etheniformans― Applied and Environmental Microbiology, 2022, 88, .	3.1	14
7	Complete Genome Sequence of <i>Sulfurospirillum</i> sp. Strain ACS _{DCE} , an Anaerobic Bacterium That Respires Tetrachloroethene under Acidic pH Conditions. Microbiology Resource Announcements, 2021, 10, .	0.6	4
8	Evaluation of engineered sorbents for the sorption of mercury from contaminated bank soils: a column study. Environmental Science and Pollution Research, 2021, 28, 22651-22663.	5.3	3
9	Food–Energy–Water Crises in the United States and China: Commonalities and Asynchronous Experiences Support Integration of Global Efforts. Environmental Science & Technology, 2021, 55, 1446-1455.	10.0	13
10	Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing <i>Dehalococcoides mccartyi</i> . Environmental Science & Technology, 2021, 55, 4831-4841.	10.0	34
11	Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biology, 2021, 27, 2669-2683.	9.5	57
12	Cometabolic Vinyl Chloride Degradation at Acidic pH Catalyzed by Acidophilic Methanotrophs Isolated from Alpine Peat Bogs. Environmental Science & amp; Technology, 2021, 55, 5959-5969.	10.0	14
13	Anaerobic Microbial Metabolism of Dichloroacetate. MBio, 2021, 12, .	4.1	13
14	Metagenomic Characterization of Soil Microbial Communities in the Luquillo Experimental Forest (Puerto Rico) and Implications for Nitrogen Cycling. Applied and Environmental Microbiology, 2021, 87, e0054621.	3.1	8
15	Microbial Taxonomy Run Amok. Trends in Microbiology, 2021, 29, 394-404.	7.7	38
16	Degradation of Adsorbed Bisphenol A by Soluble Mn(III). Environmental Science & Technology, 2021, 55, 13014-13023.	10.0	9
17	Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria. Journal of Hazardous Materials, 2021, 417, 125987.	12.4	28
18	Closing transdisciplinary collaboration gaps of food-energy-water nexus research. Environmental Science and Policy, 2021, 126, 164-167.	4.9	6

#	Article	IF	CITATIONS
19	Creating a Research Enterprise Framework for Transdisciplinary Networking to Address the Food–Energy–Water Nexus. Engineering, 2021, , .	6.7	2
20	Mineralization versus fermentation: evidence for two distinct anaerobic bacterial degradation pathways for dichloromethane. ISME Journal, 2020, 14, 959-970.	9.8	21
21	<i>Pseudomonas</i> sp. Strain 273 Degrades Fluorinated Alkanes. Environmental Science & Technology, 2020, 54, 14994-15003.	10.0	21
22	Complete Genome Sequence of Sulfurospirillum Strain ACS TCE , a Tetrachloroethene-Respiring Anaerobe Isolated from Contaminated Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	5
23	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	13.3	115
24	Roles of Organohalide-Respiring <i>Dehalococcoidia</i> in Carbon Cycling. MSystems, 2020, 5, .	3.8	39
25	Metagenome-Guided Proteomic Quantification of Reductive Dehalogenases in the <i>Dehalococcoides mccartyi</i> -Containing Consortium SDC-9. Journal of Proteome Research, 2020, 19, 1812-1823.	3.7	17
26	Genome Sequence of " <i>Candidatus</i> Dehalogenimonas etheniformans―Strain GP, a Vinyl Chloride-Respiring Anaerobe. Microbiology Resource Announcements, 2020, 9, .	0.6	8
27	Targeted detection of Dehalococcoides mccartyi microbial protein biomarkers as indicators of reductive dechlorination activity in contaminated groundwater. Scientific Reports, 2019, 9, 10604.	3.3	8
28	Impact of Fixed Nitrogen Availability on <i>Dehalococcoides mccartyi</i> Reductive Dechlorination Activity. Environmental Science & amp; Technology, 2019, 53, 14548-14558.	10.0	17
29	Metagenomes from Coastal Marine Sediments Give Insights into the Ecological Role and Cellular Features of <i>Loki</i> - and <i>Thorarchaeota</i> . MBio, 2019, 10, .	4.1	16
30	Biotic and Abiotic Dehalogenation of 1,1,2-Trichloro-1,2,2-trifluoroethane (CFC-113): Implications for Bacterial Detoxification of Chlorinated Ethenes. Environmental Science & Technology, 2019, 53, 11941-11948.	10.0	10
31	Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 2019, 17, 725-741.	28.6	324
32	One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. PLoS ONE, 2019, 14, e0211310.	2.5	9
33	Viral and bacterial community responses to stimulated Fe(III)â€bioreduction during simulated subsurface bioremediation. Environmental Microbiology, 2019, 21, 2043-2055.	3.8	32
34	Comparing DNA, RNA and protein levels for measuring microbial dynamics in soil microcosms amended with nitrogen fertilizer. Scientific Reports, 2019, 9, 17630.	3.3	18
35	Complete Genome Sequence of Dehalococcoides mccartyi Strain FL2, a Trichloroethene-Respiring Anaerobe Isolated from Pristine Freshwater Sediment. Microbiology Resource Announcements, 2019, 8,	0.6	2
36	Nitrous Oxide Is a Potent Inhibitor of Bacterial Reductive Dechlorination. Environmental Science & Technology, 2019, 53, 692-701.	10.0	16

#	Article	IF	CITATIONS
37	Impact of microbial iron oxide reduction on the transport of diffusible tracers and non-diffusible nanoparticles in soils. Chemosphere, 2019, 220, 391-402.	8.2	11
38	Proteogenomics Reveals Novel Reductive Dehalogenases and Methyltransferases Expressed during Anaerobic Dichloromethane Metabolism. Applied and Environmental Microbiology, 2019, 85, .	3.1	21
39	The lower base of corrinoid small molecules regulates reductive dehalogenase enzyme function in Dehalococcoides species. FASEB Journal, 2019, 33, 784.3.	0.5	Ο
40	Release of Electron Donors during Thermal Treatment of Soils. Environmental Science & Technology, 2018, 52, 3642-3651.	10.0	9
41	Purinyl-cobamide is a native prosthetic group of reductive dehalogenases. Nature Chemical Biology, 2018, 14, 8-14.	8.0	58
42	Denitrification by Anaeromyxobacter dehalogenans, a Common Soil Bacterium Lacking the Nitrite Reductase Genes <i>nirS</i> and <i>nirK</i> . Applied and Environmental Microbiology, 2018, 84, .	3.1	80
43	Year-Round Shotgun Metagenomes Reveal Stable Microbial Communities in Agricultural Soils and Novel Ammonia Oxidizers Responding to Fertilization. Applied and Environmental Microbiology, 2018, 84, .	3.1	121
44	Genomics and Ecology of Novel N2O-Reducing Microorganisms. Trends in Microbiology, 2018, 26, 43-55.	7.7	388
45	Draft Genome Sequences of the 1,2-Dichloropropane-Respiring Dehalococcoides mccartyi Strains RC and KS. Microbiology Resource Announcements, 2018, 7, .	0.6	1
46	Normalized Quantitative PCR Measurements as Predictors for Ethene Formation at Sites Impacted with Chlorinated Ethenes. Environmental Science & amp; Technology, 2018, 52, 13410-13420.	10.0	33
47	Phylogenomics Reveal the Dynamic Evolution of Fungal Nitric Oxide Reductases and Their Relationship to Secondary Metabolism. Genome Biology and Evolution, 2018, 10, 2474-2489.	2.5	44
48	Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions. Water Research, 2018, 145, 21-29.	11.3	16
49	Dual Carbon–Chlorine Isotope Analysis Indicates Distinct Anaerobic Dichloromethane Degradation Pathways in Two Members of <i>Peptococcaceae</i> . Environmental Science & Technology, 2018, 52, 8607-8616.	10.0	29
50	Refined experimental annotation reveals conserved corrinoid autotrophy in chloroform-respiring <i>Dehalobacter</i> isolates. ISME Journal, 2017, 11, 626-640.	9.8	21
51	Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks. Environmental Science & Technology, 2017, 51, 4821-4830.	10.0	20
52	â€~ Candidatus Dichloromethanomonas elyunquensis' gen. nov., sp. nov., a dichloromethane-degrading anaerobe of the Peptococcaceae family. Systematic and Applied Microbiology, 2017, 40, 150-159.	2.8	50
53	Mutualistic interaction between dichloromethane―and chloromethaneâ€degrading bacteria in an anaerobic mixed culture. Environmental Microbiology, 2017, 19, 4784-4796.	3.8	23
54	Complete Genome Sequence of <i>Dehalobacterium formicoaceticum</i> Strain DMC, a Strictly Anaerobic Dichloromethane-Degrading Bacterium. Genome Announcements, 2017, 5, .	0.8	19

#	Article	IF	CITATIONS
55	Grape pomace compost harbors organohalide-respiring <i>Dehalogenimonas</i> species with novel reductive dehalogenase genes. ISME Journal, 2017, 11, 2767-2780.	9.8	118
56	Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions. Environmental Science & Technology, 2017, 51, 8579-8588.	10.0	52
57	Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiology Ecology, 2017, 93, .	2.7	26
58	Community detection in sequence similarity networks based on attribute clustering. PLoS ONE, 2017, 12, e0178650.	2.5	2
59	Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates. Frontiers in Microbiology, 2016, 7, 100.	3.5	18
60	Simplified extraction of bisphenols from bacterial culture suspensions and solid matrices. Journal of Microbiological Methods, 2016, 126, 35-37.	1.6	8
61	Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ. Applied and Environmental Microbiology, 2016, 82, 3793-3800.	3.1	140
62	A Data Mining Approach to Predict In Situ Detoxification Potential of Chlorinated Ethenes. Environmental Science & Technology, 2016, 50, 5181-5188.	10.0	27
63	Fate of Bisphenol A in Terrestrial and Aquatic Environments. Environmental Science & Technology, 2016, 50, 8403-8416.	10.0	215
64	The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring <i>Dehalococcoides mccartyi</i> . ISME Journal, 2016, 10, 1092-1101.	9.8	59
65	Detection and Diversity of Fungal Nitric Oxide Reductase Genes (<i>p450nor</i>) in Agricultural Soils. Applied and Environmental Microbiology, 2016, 82, 2919-2928.	3.1	55
66	Draft Genome Sequence of a Strictly Anaerobic Dichloromethane-Degrading Bacterium. Genome Announcements, 2016, 4, .	0.8	13
67	Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE–DNAPL source zone. Journal of Contaminant Hydrology, 2015, 182, 78-90.	3.3	18
68	Identification of 4-Hydroxycumyl Alcohol As the Major MnO ₂ -Mediated Bisphenol A Transformation Product and Evaluation of Its Environmental Fate. Environmental Science & Technology, 2015, 49, 6214-6221.	10.0	46
69	Response to Comment on "Environmental Fate of the Next Generation Refrigerant 2,3,3,3-Tetrafluoropropene (HFO-1234yf)″ Environmental Science & Technology, 2015, 49, 8265-8266.	10.0	1
70	Nitrite Control over Dissimilatory Nitrate/Nitrite Reduction Pathways in Shewanella loihica Strain PV-4. Applied and Environmental Microbiology, 2015, 81, 3510-3517.	3.1	52
71	Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3â°'/NO2â°' reduction pathways in <i>Shewanella loihica</i> strain PV-4. ISME Journal, 2015, 9, 1093-1104.	9.8	184
72	4-Methylphenol produced in freshwater sediment microcosms is not a bisphenol A metabolite. Chemosphere, 2014, 117, 521-526.	8.2	7

#	Article	IF	CITATIONS
73	Environmental Fate of the Next Generation Refrigerant 2,3,3,3-Tetrafluoropropene (HFO-1234yf). Environmental Science & Technology, 2014, 48, 13181-13187.	10.0	34
74	Identification and Environmental Distribution of <i>dcpA</i> , Which Encodes the Reductive Dehalogenase Catalyzing the Dichloroelimination of 1,2-Dichloropropane to Propene in Organohalide-Respiring Chloroflexi. Applied and Environmental Microbiology, 2014, 80, 808-818.	3.1	43
75	Refined NrfA Phylogeny Improves PCR-Based <i>nrfA</i> Gene Detection. Applied and Environmental Microbiology, 2014, 80, 2110-2119.	3.1	186
76	Distribution of Organohalide-Respiring Bacteria between Solid and Aqueous Phases. Environmental Science & Technology, 2014, 48, 10878-10887.	10.0	17
77	Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates. Geochimica Et Cosmochimica Acta, 2014, 136, 100-113.	3.9	112
78	Bioaugmentation with Distinct <i>Dehalobacter</i> Strains Achieves Chloroform Detoxification in Microcosms. Environmental Science & amp; Technology, 2014, 48, 1851-1858.	10.0	52
79	Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE) Reductive Dehalogenation. Molecules, 2014, 19, 6450-6473.	3.8	43
80	Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis. Journal of Contaminant Hydrology, 2013, 151, 117-130.	3.3	14
81	Environmental proteomics reveals early microbial community responses to biostimulation at a uranium―and nitrateâ€contaminated site. Proteomics, 2013, 13, 2921-2930.	2.2	71
82	Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 625-635.	1.7	502
83	Dehalococcoides and Reductive Dechlorination of Chlorinated Solvents. , 2013, , 39-88.		42
84	Design and Application of an Internal Amplification Control to Improve Dehalococcoides mccartyi 16S rRNA Gene Enumeration by qPCR. Environmental Science & Technology, 2013, 47, 11131-11138.	10.0	22
85	Interference of ferric ions with ferrous iron quantification using the ferrozine assay. Journal of Microbiological Methods, 2013, 95, 366-367.	1.6	26
86	Guided cobalamin biosynthesis supports <i>Dehalococcoides mccartyi</i> reductive dechlorination activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120320.	4.0	124
87	Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120322.	4.0	266
88	Shewanella spp. Use Acetate as an Electron Donor for Denitrification but Not Ferric Iron or Fumarate Reduction. Applied and Environmental Microbiology, 2013, 79, 2818-2822.	3.1	43
89	Functional Characterization of Reductive Dehalogenases by Using Blue Native Polyacrylamide Gel Electrophoresis. Applied and Environmental Microbiology, 2013, 79, 974-981.	3.1	90
90	Dichloromethane Fermentation by a Dehalobacter sp. in an Enrichment Culture Derived from Pristine River Sediment. Applied and Environmental Microbiology, 2012, 78, 1288-1291.	3.1	80

#	Article	IF	CITATIONS
91	Unexpected Specificity of Interspecies Cobamide Transfer from Geobacter spp. to Organohalide-Respiring Dehalococcoides mccartyi Strains. Applied and Environmental Microbiology, 2012, 78, 6630-6636.	3.1	123
92	Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater. Journal of Microbiological Methods, 2012, 88, 263-270.	1.6	33
93	Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genomics, 2012, 13, 200.	2.8	76
94	Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 210-216.	1.7	108
95	Comparative <i>c</i> -type cytochrome expression analysis in <i>Shewanella oneidensis</i> strain MR-1 and <i>Anaeromyxobacter dehalogenans</i> strain 2CP-C grown with soluble and insoluble oxidized metal electron acceptors. Biochemical Society Transactions, 2012, 40, 1204-1210.	3.4	19
96	Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proceedings of the United States of America, 2012, 109, 19709-19714.	7.1	502
97	Effects of Elevated Temperature on <i>Dehalococcoides</i> Dechlorination Performance and DNA and RNA Biomarker Abundance. Environmental Science & amp; Technology, 2011, 45, 712-718.	10.0	46
98	Quantifying the Effects of 1,1,1-Trichloroethane and 1,1-Dichloroethane on Chlorinated Ethene Reductive Dehalogenases. Environmental Science & Technology, 2011, 45, 9693-9702.	10.0	41
99	Liquidâ^'Liquid Mass Transfer of Partitioning Electron Donors in Chlorinated Solvent Source Zones. Environmental Science & Technology, 2011, 45, 1547-1554.	10.0	8
100	Solution and Microbial Controls on the Formation of Reduced U(IV) Species. Environmental Science & Technology, 2011, 45, 8336-8344.	10.0	123
101	Stable Carbon Isotope Enrichment Factors for <i>cis</i> -1,2-Dichloroethene and Vinyl Chloride Reductive Dechlorination by <i>Dehalococcoides</i> . Environmental Science & Technology, 2011, 45, 2951-2957.	10.0	28
102	Electron donor availability for microbial reductive processes following thermal treatment. Water Research, 2011, 45, 6625-6636.	11.3	18
103	Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities. Biodegradation, 2011, 22, 687-698.	3.0	27
104	Unique Ecophysiology among U(VI)-Reducing Bacteria as Revealed by Evaluation of Oxygen Metabolism in <i>Anaeromyxobacter dehalogenans</i> Strain 2CP-C. Applied and Environmental Microbiology, 2010, 76, 176-183.	3.1	18
105	U(VI) Reduction to Mononuclear U(IV) by Desulfitobacterium Species. Environmental Science & Technology, 2010, 44, 4705-4709.	10.0	161
106	Comparing On-Site to Off-Site Biomass Collection for <i>Dehalococcoides</i> Biomarker Gene Quantification To Predict in Situ Chlorinated Ethene Detoxification Potential. Environmental Science & Technology, 2010, 44, 5127-5133.	10.0	44
107	Fate of TCE in Heated Fort Lewis Soil. Environmental Science & amp; Technology, 2009, 43, 909-914.	10.0	17
108	Diversity and Distribution of <i>Anaeromyxobacter</i> Strains in a Uranium-Contaminated Subsurface Environment with a Nonuniform Groundwater Flow. Applied and Environmental Microbiology, 2009, 75, 3679-3687.	3.1	44

#	Article	IF	CITATIONS
109	Electron donorâ€dependent radionuclide reduction and nanoparticle formation by <i>Anaeromyxobacter dehalogenans</i> strain 2CP . Environmental Microbiology, 2009, 11, 534-543.	3.8	49
110	Stable Carbon Isotope Fractionation of 1,2-Dichloropropane during Dichloroelimination by <i>Dehalococcoides</i> Populations. Environmental Science & Technology, 2009, 43, 6915-6919.	10.0	32
111	Spatial and Temporal Distributions of Geobacter lovleyi and Dehalococcoides spp. during Bioenhanced PCE-NAPL Dissolution. Environmental Science & Technology, 2009, 43, 1977-1985.	10.0	59
112	Microbial Colonization of an In Situ Sediment Cap and Correlation to Stratified Redox Zones. Environmental Science & Technology, 2009, 43, 66-74.	10.0	48
113	Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment. Journal of Microbiological Methods, 2009, 78, 119-126.	1.6	41
114	Localized Plasticity in the Streamlined Genomes of Vinyl Chloride Respiring Dehalococcoides. PLoS Genetics, 2009, 5, e1000714.	3.5	162
115	Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone. Water Research, 2008, 42, 2963-2974.	11.3	53
116	Oxygen Effect on <i>Dehalococcoides</i> Viability and Biomarker Quantification. Environmental Science & Technology, 2008, 42, 5718-5726.	10.0	93
117	Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by <i>Geobacter lovleyi</i> . Applied and Environmental Microbiology, 2008, 74, 5943-5947.	3.1	240
118	Resolution of Culture <i>Clostridium bifermentans</i> DPH-1 into Two Populations, a <i>Clostridium</i> sp. and Tetrachloroethene-Dechlorinating <i>Desulfitobacterium hafniense</i> Strain JH1. Applied and Environmental Microbiology, 2008, 74, 6141-6143.	3.1	25
119	The Mosaic Genome of Anaeromyxobacter dehalogenans Strain 2CP-C Suggests an Aerobic Common Ancestor to the Delta-Proteobacteria. PLoS ONE, 2008, 3, e2103.	2.5	130
120	Detection and Quantification of <i>Geobacter lovleyi</i> Strain SZ: Implications for Bioremediation at Tetrachloroethene- and Uranium-Impacted Sites. Applied and Environmental Microbiology, 2007, 73, 6898-6904.	3.1	52
121	The Dehalococcoides Population in Sediment-Free Mixed Cultures Metabolically Dechlorinates the Commercial Polychlorinated Biphenyl Mixture Aroclor 1260. Applied and Environmental Microbiology, 2007, 73, 2513-2521.	3.1	140
122	Experimental Evaluation and Mathematical Modeling of Microbially Enhanced Tetrachloroethene (PCE) Dissolution. Environmental Science & Technology, 2007, 41, 963-970.	10.0	84
123	Comparative Analysis of Three Tetrachloroethene to Ethene Halorespiring Consortia Suggests Functional Redundancy. Environmental Science & Technology, 2007, 41, 2261-2269.	10.0	46
124	Effects of the Nonionic Surfactant Tween 80 on Microbial Reductive Dechlorination of Chlorinated Ethenes. Environmental Science & amp; Technology, 2007, 41, 1710-1716.	10.0	38
125	Hexavalent uranium supports growth of <i>Anaeromyxobacter dehalogenans</i> and <i>Geobacter</i> spp. with lower than predicted biomass yields. Environmental Microbiology, 2007, 9, 2885-2893.	3.8	67
126	Environmental distribution of the trichloroethene reductive dehalogenase gene (tceA) suggests lateral gene transfer among Dehalococcoides. FEMS Microbiology Ecology, 2007, 59, 206-214.	2.7	51

#	Article	IF	CITATIONS
127	A Vista for Microbial Ecology and Environmental Biotechnology. Environmental Science & Technology, 2006, 40, 1096-1103.	10.0	118
128	Geobacter lovleyi sp. nov. Strain SZ, a Novel Metal-Reducing and Tetrachloroethene-Dechlorinating Bacterium. Applied and Environmental Microbiology, 2006, 72, 2775-2782.	3.1	306
129	Kinetics of the Microbial Reductive Dechlorination of Pentachloroaniline. Environmental Science & Technology, 2006, 40, 4467-4472.	10.0	19
130	Activity of Desulfitobacterium sp. Strain Viet1 Demonstrates Bioavailability of 2,4-Dichlorophenol Previously Sequestered by the Aquatic Plant Lemna minor. Environmental Science & Technology, 2006, 40, 529-535.	10.0	20
131	Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 2006, 17, 274-284.	6.6	218
132	Uranium(VI) Reduction by Anaeromyxobacter dehalogenans Strain 2CP-C. Applied and Environmental Microbiology, 2006, 72, 3608-3614.	3.1	112
133	Quantitative PCR Confirms Purity of Strain GT, a Novel Trichloroethene-to-Ethene-Respiring Dehalococcoides Isolate. Applied and Environmental Microbiology, 2006, 72, 1980-1987.	3.1	241
134	Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains. Applied and Environmental Microbiology, 2006, 72, 2765-2774.	3.1	413
135	Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology, 2005, 7, 1442-1450.	3.8	237
136	Coupling Aggressive Mass Removal with Microbial Reductive Dechlorination for Remediation of DNAPL Source Zones: A Review and Assessment. Environmental Health Perspectives, 2005, 113, 465-477.	6.0	94
137	Multiple Reductive-Dehalogenase-Homologous Genes Are Simultaneously Transcribed during Dechlorination by Dehalococcoides- Containing Cultures. Applied and Environmental Microbiology, 2005, 71, 8257-8264.	3.1	129
138	Phospholipid Furan Fatty Acids and Ubiquinone-8: Lipid Biomarkers That May Protect Dehalococcoides Strains from Free Radicals. Applied and Environmental Microbiology, 2005, 71, 8426-8433.	3.1	45
139	Analysis of Trace Hydrogen Metabolism. Methods in Enzymology, 2005, 397, 222-237.	1.0	14
140	Enrichment, Cultivation, and Detection of Reductively Dechlorinating Bacteria. Methods in Enzymology, 2005, 397, 77-111.	1.0	93
141	Bioaugmentation for chlorinated ethene detoxification: Bioaugmentation and molecular diagnostics in the bioremediation of chlorinated ethene-contaminated sites. Industrial Biotechnology, 2005, 1, 114-118.	0.8	42
142	Populations Implicated in Anaerobic Reductive Dechlorination of 1,2-Dichloropropane in Highly Enriched Bacterial Communities. Applied and Environmental Microbiology, 2004, 70, 4088-4095.	3.1	44
143	Multiple Nonidentical Reductive-Dehalogenase-Homologous Genes Are Common in <i>Dehalococcoides</i> . Applied and Environmental Microbiology, 2004, 70, 5290-5297.	3.1	129
144	Genetic Identification of a Putative Vinyl Chloride Reductase in Dehalococcoides sp. Strain BAV1. Applied and Environmental Microbiology, 2004, 70, 6347-6351.	3.1	227

#	Article	IF	CITATIONS
145	Aerobic Biodegradation of Vinyl Chloride by a Highly Enriched Mixed Culture. Biodegradation, 2004, 15, 197-204.	3.0	23
146	Anaerobic Microbial Reductive Dechlorination of Tetrachloroethene to Predominatelytrans-1,2-Dichloroethene. Environmental Science & Technology, 2004, 38, 4300-4303.	10.0	56
147	Stimulated Microbial Reductive Dechlorination following Surfactant Treatment at the Bachman Road Siteâ€. Environmental Science & Technology, 2004, 38, 5902-5914.	10.0	60
148	Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 2003, 424, 62-65.	27.8	461
149	Characterization of Two Tetrachloroethene-Reducing, Acetate-Oxidizing Anaerobic Bacteria and Their Description as Desulfuromonas michiganensis sp. nov. Applied and Environmental Microbiology, 2003, 69, 2964-2974.	3.1	188
150	Complete Detoxification of Vinyl Chloride by an Anaerobic Enrichment Culture and Identification of the Reductively Dechlorinating Population as a Dehalococcoides Species. Applied and Environmental Microbiology, 2003, 69, 996-1003.	3.1	324
151	Acetate versus Hydrogen as Direct Electron Donors To Stimulate the Microbial Reductive Dechlorination Process at Chloroethene-Contaminated Sitesâ€. Environmental Science & Technology, 2002, 36, 3945-3952.	10.0	190
152	Fate and Origin of 1,2-Dichloropropane in an Unconfined Shallow Aquifer. Environmental Science & Technology, 2001, 35, 455-461.	10.0	32
153	Microbial Community Changes Associated with a Shift from Reductive Dechlorination of PCE to Reductive Dechlorination of cis-DCE and VC. Environmental Science & Technology, 2000, 34, 1056-1061.	10.0	88
154	Dehalogenation of 4-chlorobenzoate. Biodegradation, 1995, 6, 203-212.	3.0	24
155	Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3: An ATP/coenzyme A dependent reaction. Biochemical and Biophysical Research Communications, 1991, 176, 1106-1111.	2.1	49
156	Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalysed by 4-chlorobenzoate dehalogenase fromPseudomonassp. CBS3. FEBS Letters, 1991, 290, 224-226.	2.8	22