Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7083277/publications.pdf

Version: 2024-02-01

122	2,157	20	33
papers	citations	h-index	g-index
127	127	127	1035
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advancing Knowledge on Situation Comprehension in Dynamic Traffic Situations by Studying Eye Movements to Empty Spatial Locations. Human Factors, 2023, 65, 1674-1688.	3.5	2
2	Motivated to Use: Beliefs and Motivation Influencing the Acceptance and Use of Assistance and Navigation Systems. International Journal of Human-Computer Interaction, 2023, 39, 2926-2941.	4.8	5
3	Two Routes to Trust Calibration. , 2022, , 910-929.		O
4	"Do I really need it?― An explorative study of acceptance and usage of in-vehicle technology. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84, 65-82.	3.7	12
5	Automation, Situation Awareness and Mental Workload. Studies in Computational Intelligence, 2022, , 3-27.	0.9	2
6	Supporting cooperative driving behaviour by technology – HMI solution, acceptance by drivers and effects on workload and driving behaviour. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84, 139-154.	3.7	4
7	Step Aside! VR-Based Evaluation of Adaptive Robot Conflict Resolution Strategies for Domestic Service Robots. International Journal of Social Robotics, 2022, 14, 1239-1260.	4. 6	15
8	A subjective one-item measure based on NASA-TLX to assess cognitive workload in driver-vehicle interaction. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 86, 210-225.	3.7	10
9	Implicit intention communication as a design opportunity for automated vehicles: Understanding drivers' interpretation of vehicle trajectory at narrow passages. Accident Analysis and Prevention, 2022, 173, 106691.	5.7	15
10	Findings From A Qualitative Field Study with An Autonomous Robot in Public: Exploration of User Reactions and Conflicts. International Journal of Social Robotics, 2022, 14, 1625-1655.	4.6	14
11	What's Driving Me? Exploration and Validation of a Hierarchical Personality Model for Trust in Automated Driving. Human Factors, 2021, 63, 1076-1105.	3.5	30
12	Sleep inertia in automated driving: Post-sleep take-over and driving performance. Accident Analysis and Prevention, 2021, 150, 105918.	5.7	14
13	A meta-analysis of the n-back task while driving and its effects on cognitive workload. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 76, 269-285.	3.7	16
14	When does the driver feel ready to drive again after automated driving? – A qualitative approach. IT - Information Technology, 2021, 63, 87-97.	0.9	1
15	Solving Cooperative Situations: Strategic Driving Decisions Depending on Perceptions and Expectations About Other Drivers. Lecture Notes in Networks and Systems, 2021, , 742-750.	0.7	5
16	Small Talk with a Robot? The Impact of Dialog Content, Talk Initiative, and Gaze Behavior of a Social Robot on Trust, Acceptance, and Proximity. International Journal of Social Robotics, 2021, 13, 1485-1498.	4.6	37
17	Personality Influences on Drivers' Decision to Take Back Manual Control: A Simulator Study on Automated Driving. Lecture Notes in Networks and Systems, 2021, , 726-733.	0.7	1
18	Self-Driving Vehicles and Pedestrian Interaction: Does an External Human-Machine Interface Mitigate the Threat of a Tinted Windshield or a Distracted Driver?. International Journal of Human-Computer Interaction, 2021, 37, 1364-1374.	4.8	25

#	Article	IF	CITATIONS
19	Do drivers accept cooperative behavior of their automated vehicle on highways?. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 77, 236-245.	3.7	3
20	Vulnerable road users and the coming wave of automated vehicles: Expert perspectives. Transportation Research Interdisciplinary Perspectives, 2021, 9, 100293.	2.7	69
21	Investigating the Validity of Online Robot Evaluations: Comparison of Findings from an One-Sample Online and Laboratory Study. , 2021, , .		11
22	More Than a Feelingâ€"Interrelation of Trust Layers in Human-Robot Interaction and the Role of User Dispositions and State Anxiety. Frontiers in Psychology, 2021, 12, 592711.	2.1	32
23	Calibrating Pedestrians' Trust in Automated Vehicles. , 2021, , .		22
24	Immersive virtual reality or auditory text first? Effects of adequate sequencing and prompting on learning outcome. British Journal of Educational Technology, 2021, 52, 2058-2076.	6.3	6
25	Assessing crossing and communication behavior of pedestrians at urban streets. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 80, 341-358.	3.7	7
26	Intelligent Mobility in the City: The Influence of System and Context Factors on Drivers' Takeover Willingness and Trust in Automated Vehicles. Frontiers in Human Dynamics, 2021, 3, .	1.8	5
27	Navigating with Augmented Reality – How does it affect drivers' mental load?. Applied Ergonomics, 2021, 94, 103398.	3.1	14
28	Pedestrian assessment: Is displaying automated driving mode in self-driving vehicles as relevant as emitting an engine sound in electric vehicles?. Applied Ergonomics, 2021, 94, 103425.	3.1	8
29	Workshop on Human-Vehicle-Environment Cooperation in Automated driving: The Next Stage of a Classic Topic., 2021,,.		1
30	Genie vs. Jarvis: Characteristics and Design Considerations of In-Vehicle Intelligent Agents., 2021,,.		3
31	From SAE-Levels to Cooperative Task Distribution:An Efficient and Usable Way to Deal with System Limitations?. , 2021, , .		6
32	"To Go or Not To Go? That is the Question― When In-Vehicle Agents Argue with Each Other. , 2021, , .		4
33	Prompting in-depth learning in immersive virtual reality: Impact of an elaboration prompt on developing a mental model. Computers and Education, 2021, 171, 104235.	8.3	18
34	Differential effects of driver sleepiness and sleep inertia on driving behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 82, 111-120.	3.7	17
35	Cooperative Speed Regulation in Automated Vehicles: A Comparison Between a Touch, Pedal, and Button Interface as the Input Modality. , 2021, , .		4
36	Measuring driver-vehicle cooperation: Development and validation of the Human-Machine-Interaction-Interdependence Questionnaire (HMII). Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 83, 424-439.	3.7	8

#	Article	IF	Citations
37	From anticipation to behavioral intention: Insights into human processing of multiple retrieval cues in road traffic. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 83, 252-265.	3.7	2
38	The More You Know: Trust Dynamics and Calibration in Highly Automated Driving and the Effects of Take-Overs, System Malfunction, and System Transparency. Human Factors, 2020, 62, 718-736.	3.5	106
39	Yielding Light Signal Evaluation for Self-driving Vehicle and Pedestrian Interaction. Advances in Intelligent Systems and Computing, 2020, , 189-194.	0.6	10
40	Get Ready for Being Chauffeured. Human Factors, 2020, 62, 1322-1338.	3.5	32
41	The effect of visual HMIs of a system assisting manual drivers in manoeuvre coordination in system limit and system failure situations. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74, 81-94.	3.7	13
42	Comparing dynamic and static illustration of an HMI for cooperative driving. Accident Analysis and Prevention, 2020, 144, 105682.	5.7	16
43	Reducing uncertainty by anticipation in traffic – The effect of situational characteristics and criticality on behavioral, subjective, and psychophysiological parameters. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 75, 173-186.	3.7	4
44	Efficient Paradigm to Measure Street-Crossing Onset Time of Pedestrians in Video-Based Interactions with Vehicles. Information (Switzerland), 2020, 11, 360.	2.9	11
45	Effects of explaining system failures during maneuver coordination while driving manual or automated. Accident Analysis and Prevention, 2020, 148, 105839.	5.7	9
46	Tracing current explanations in memory: A process analysis based on eye-tracking. Quarterly Journal of Experimental Psychology, 2020, 73, 1703-1717.	1.1	2
47	Sleep in highly automated driving: Takeover performance after waking up. Accident Analysis and Prevention, 2020, 144, 105617.	5.7	27
48	External HMI for self-driving vehicles: Which information shall be displayed? Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 68, 171-186.	3.7	97
49	Situational influencing factors on understanding cooperative actions in automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70, 223-234.	3.7	23
50	Development and Testing of Psychological Conflict Resolution Strategies for Assertive Robots to Resolve Humanâ€"Robot Goal Conflict. Frontiers in Robotics and Al, 2020, 7, 591448.	3.2	15
51	Look ahead: understanding cognitive anticipatory processes based on situational characteristics in dynamic traffic situations. IET Intelligent Transport Systems, 2020, 14, 233-240.	3.0	9
52	A Longitudinal Video Study on Communicating Status and Intent for Self-Driving Vehicle $\hat{A}-$ Pedestrian Interaction. , 2020, , .		39
53	Effect of Visualization of Pedestrian Intention Recognition on Trust and Cognitive Load. , 2020, , .		27
54	Designing Communication Strategies of Autonomous Vehicles with Pedestrians: An Intercultural Study. , 2020, , .		19

#	Article	IF	Citations
55	"Left!―– "Right!―– "Follow!― , 2020, , .		1
56	Come Closer: Experimental Investigation of Robots' Appearance on Proximity, Affect and Trust in a Domestic Environment. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 395-399.	0.3	5
57	After you: Merging at Highway On-Ramps. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 1105-1109.	0.3	5
58	Does crossing the road in a group influence pedestrians' gaze behavior?. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 1938-1942.	0.3	6
59	KoFFl—The New Driving Experience: How to Cooperate with Automated Driving Vehicles. Human-computer Interaction Series, 2020, , 155-211.	0.6	1
60	Towards a Cooperative Driver-Vehicle Interface: Enhancing Drivers' Perception of Cyclists through Augmented Reality. , 2020, , .		6
61	Cognitive psychological approach for unraveling the take-over process during automated driving. , 2019, , .		1
62	Online experiments as a supplement of automated driving simulator studies. , 2019, , .		4
63	Real autonomous driving from a passenger's perspective: Two experimental investigations using gaze behaviour and trust ratings in field and simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66, 15-28.	3.7	35
64	Three Years ColnCar: What Cooperatively Interacting Cars Might Learn from Human Drivers. IFAC-PapersOnLine, 2019, 52, 105-110.	0.9	2
65	Spatial visualization of sensor information for automated vehicles. , 2019, , .		2
66	The effect of incentives in driving simulator studies. , 2019, , .		1
67	Stuck behind a truck. , 2019, , .		4
68	Two Routes to Trust Calibration. International Journal of Mobile Human Computer Interaction, 2019, 11, 1-17.	0.4	21
69	How to support cooperative driving by HMI design?. Transportation Research Interdisciplinary Perspectives, 2019, 3, 100064.	2.7	9
70	Light-Based External Human Machine Interface: Color Evaluation for Self-Driving Vehicle and Pedestrian Interaction. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 1232-1236.	0.3	32
71	Investigating Initial Driver Intention on Overtaking on Rural Roads. , 2019, , .		3
72	Cooperative Overtaking., 2019,,.		42

#	Article	IF	CITATIONS
73	When cooperation is needed: the effect of spatial and time distance and criticality on willingness to cooperate. Cognition, Technology and Work, 2019, 21, 21-31.	3.0	15
74	Scared to Trust? – Predicting Trust in Highly Automated Driving by Depressiveness, Negative Self-Evaluations and State Anxiety. Frontiers in Psychology, 2019, 10, 2917.	2.1	29
75	Towards Opt-Out Permission Policies to Maximize the Use of Automated Driving. , 2019, , .		4
76	Designing Augmented Reality Navigation Visualizations for the Vehicle: A Question of Real World Object Coverage?. Lecture Notes in Computer Science, 2019, , 161-175.	1.3	2
77	Carrot and stick: A game-theoretic approach to motivate cooperative driving through social interaction. Transportation Research Part C: Emerging Technologies, 2018, 88, 159-175.	7.6	50
78	Design Guidelines for Reliability Communication in Autonomous Vehicles. , 2018, , .		16
79	Calibration of Trust Expectancies in Conditionally Automated Driving by Brand, Reliability Information and Introductionary Videos. , 2018, , .		23
80	Social interactions in traffic: The effect of external factors. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 97-101.	0.3	5
81	How to Design Valid Simulator Studies for Investigating User Experience in Automated Driving. , 2018, , .		32
82	Insight into cooperation processes for traffic scenarios: modelling with naturalistic decision making. Cognition, Technology and Work, 2018, 20, 621-635.	3.0	16
83	A measurement to driving situation awareness in signalized intersections. Transportation Research, Part D: Transport and Environment, 2018, 62, 739-747.	6.8	6
84	Click or Hold., 2018,,.		13
85	From Car-Driver-Handovers to Cooperative Interfaces: Visions for Driver–Vehicle Interaction in Automated Driving. Human-computer Interaction Series, 2017, , 273-294.	0.6	52
86	Workshop on Human Machine Interaction in Autonomous Vehicles. , 2017, , .		2
87	Building driver's trust in lane change assistance systems by adapting to driver's uncertainty states. , 2017, , .		3
88	1st Workshop on Understanding Automation. , 2017, , .		5
89	Touch Screen Maneuver Approval Mechanisms for Highly Automated Vehicles., 2017,,.		12
90	Developing a Highly Automated Driving Scenario to Investigate User Intervention. , 2017, , .		1

#	Article	IF	CITATIONS
91	Help me make a dinner! Challenges when assisting humans in action planning. , 2017, , .		5
92	Autonomous Driving. International Journal of Mobile Human Computer Interaction, 2017, 9, 58-74.	0.4	9
93	1st Workshop on Situational Awareness in Semi-Automated Vehicles. , 2016, , .		5
94	Towards Cooperative Driving. , 2016, , .		64
95	Human After All., 2016,,.		29
96	Elaborating Feedback Strategies for Maintaining Automation in Highly Automated Driving. , 2016, , .		40
97	The study design of UDRIVE: the naturalistic driving study across Europe for cars, trucks and scooters. European Transport Research Review, 2016, 8, .	4.8	49
98	Developing a model of driver's uncertainty in lane change situations for trustworthy lane change decision aid systems. , 2016, , .		7
99	Development of a Lane Change Assistance System Adapting to Driver's Uncertainty During Decision-Making. , 2016, , .		6
100	Anthropomorphic agents, transparent automation and driver personality. , 2015, , .		19
101	Autonomous driving., 2015, , .		140
102	Interaction design of automatic steering for collision avoidance: challenges and potentials of driver decoupling. IET Intelligent Transport Systems, 2015, 9, 95-104.	3.0	34
103	Driver behavior following an automatic steering intervention. Accident Analysis and Prevention, 2015, 83, 190-196.	5.7	12
104	Evaluation of three different interaction designs for an automatic steering intervention. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 27, 238-251.	3.7	22
105	Dynamic simulation and prediction of drivers' attention distribution. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 21, 278-294.	3.7	29
106	A comparison of selected simple supervised learning algorithms to predict driver intent based on gaze data. Neurocomputing, 2013, 121, 108-130.	5.9	101
107	A Neural Network Model for Driver's Lane-Changing Trajectory Prediction in Urban Traffic Flow. Mathematical Problems in Engineering, 2013, 2013, 1-8.	1.1	41
108	Validation of the MoSAIC-Driving Simulator – Investigating the impact of a human driver on cooperative driving behavior in an experimental simulation setup. Proceedings of the Human Factors and Ergonomics Society, 2013, 57, 2052-2056.	0.3	3

#	Article	IF	CITATIONS
109	A Modular and Scalable Application Platform for Testing and Evaluating Its Components. , 2011, , .		5
110	Using Pattern Recognition to Predict Driver Intent. Lecture Notes in Computer Science, 2011, , 140-149.	1.3	16
111	Effects of Situational Characteristics on Drivers' Merging into Freeway Traffic. , 2011, , 343-351.		4
112	The Influence of Predictability and Frequency of Events on the Gaze Behaviour While Driving. , 2011 , , $283-290$.		2
113	Learning from examples does not prevent order effects in belief revision. Thinking and Reasoning, 2010, 16, 98-130.	3.2	3
114	A Comprehension Based Cognitive Model of Situation Awareness. Lecture Notes in Computer Science, 2009, , 192-201.	1.3	13
115	Driving and Situation Awareness: A Cognitive Model of Memory-Update Processes. Lecture Notes in Computer Science, 2009, , 986-994.	1.3	17
116	Visuelle Wahrnehmung und Arbeitsged \tilde{A} whtnis als Grundlage f \tilde{A} 1 4r Situation Awareness beim Autofahren. , 2008, , 183-195.		0
117	Situation Awareness and Driving: A Cognitive Model. , 2007, , 253-265.		27
118	Situation Awareness and Secondary Task Performance While Driving. Lecture Notes in Computer Science, 2007, , 256-263.	1.3	9
119	Evaluation of in-vehicle HMI using occlusion techniques: experimental results and practical implications. Applied Ergonomics, 2004, 35, 197-205.	3.1	55
120	A Methodical Approach to Examine Conflicts in Context of Driver - Autonomous Vehicle - Interaction. , 0, , .		4
121	Driving with Foresight - Evaluating the Effect of Cognitive Distraction and Experience on Anticipating Events in Traffic. , 0, , .		2
122	German Validation of the Prosocial and Aggressive Driving Inventory (PADI). , 0, , .		0