Anthony R Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7082759/publications.pdf Version: 2024-02-01

	7568	4548
31,397	77	171
citations	h-index	g-index
222	222	30718
docs citations	times ranked	citing authors
	citations 222	citations h-index

#	Article	IF	CITATIONS
1	Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature, 2022, 602, 162-168.	27.8	140
2	Clonal dynamics of haematopoiesis across the human lifespan. Nature, 2022, 606, 343-350.	27.8	160
3	Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell, 2021, 28, 502-513.e6.	11.1	36
4	Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Advances, 2021, 5, 1922-1932.	5.2	8
5	Longitudinal Cytokine Profiling Identifies GROâ€Î± and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia. HemaSphere, 2020, 4, e371.	2.7	37
6	The stem/progenitor landscape is reshaped in a mouse model of essential thrombocythemia and causes excess megakaryocyte production. Science Advances, 2020, 6, .	10.3	14
7	Mutant CALR functions: gains and losses. Blood, 2020, 136, 6-7.	1.4	3
8	Mutant Calreticulin in the Myeloproliferative Neoplasms. HemaSphere, 2020, 4, e333.	2.7	22
9	Notch Signaling Mediates Secondary Senescence. Cell Reports, 2019, 27, 997-1007.e5.	6.4	82
10	Clonal approaches to understanding the impact of mutations on hematologic disease development. Blood, 2019, 133, 1436-1445.	1.4	14
11	Cohesin-dependent regulation of gene expression during differentiation is lost in cohesin-mutated myeloid malignancies. Blood, 2019, 134, 2195-2208.	1.4	39
12	MicroRNA-101 expression is associated with JAK2V617F activity and regulates JAK2/STAT5 signaling. Leukemia, 2018, 32, 1826-1830.	7.2	1
13	Thrombopoietin signaling to chromatin elicits rapid and pervasive epigenome remodeling within poised chromatin architectures. Genome Research, 2018, 28, 295-309.	5.5	39
14	Mutant calreticulin knockin mice develop thrombocytosis and myelofibrosis without a stem cell self-renewal advantage. Blood, 2018, 131, 649-661.	1.4	70
15	Determination of complex subclonal structures of hematological malignancies by multiplexed genotyping of blood progenitor colonies. Experimental Hematology, 2018, 57, 60-64.e1.	0.4	4
16	Multiplexing for Oxidative Bisulfite Sequencing (oxBS-seq). Methods in Molecular Biology, 2018, 1708, 665-678.	0.9	5
17	Hydroxycarbamide Plus Aspirin Versus Aspirin Alone in Patients With Essential Thrombocythemia Age 40 to 59 Years Without High-Risk Features. Journal of Clinical Oncology, 2018, 36, 3361-3369.	1.6	54
18	Classification and Personalized Prognosis in Myeloproliferative Neoplasms. New England Journal of Medicine, 2018, 379, 1416-1430.	27.0	442

#	Article	IF	CITATIONS
19	Population dynamics of normal human blood inferred from somatic mutations. Nature, 2018, 561, 473-478.	27.8	427
20	Single-cell approaches identify the molecular network driving malignant hematopoietic stem cell self-renewal. Blood, 2018, 132, 791-803.	1.4	24
21	Single Cell RNA-Seq Characterises Pre-Leukemic Transformation Driven By CEBPA N321D in the Hoxb8-FL Cell Line. Blood, 2018, 132, 3887-3887.	1.4	0
22	Order Matters: The Order of Somatic Mutations Influences Cancer Evolution. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a027060.	6.2	46
23	Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia. Cancer Cell, 2017, 31, 549-562.e11.	16.8	89
24	Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment. Cell Reports, 2017, 19, 1503-1511.	6.4	76
25	SC3: consensus clustering of single-cell RNA-seq data. Nature Methods, 2017, 14, 483-486.	19.0	1,203
26	Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica, 2017, 102, 7-17.	3.5	74
27	Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. Journal of Experimental Medicine, 2017, 214, 3085-3104.	8.5	21
28	Myeloproliferative neoplasms: from origins to outcomes. Blood, 2017, 130, 2475-2483.	1.4	107
29	Myeloproliferative neoplasms: from origins to outcomes. Hematology American Society of Hematology Education Program, 2017, 2017, 470-479.	2.5	29
30	STAT1 activation in association with JAK2 exon 12 mutations. Haematologica, 2016, 101, e15-e19.	3.5	11
31	Pathogenesis of Myeloproliferative Disorders. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 101-126.	22.4	38
32	Analysis of Jak2 signaling reveals resistance of mouse embryonic hematopoietic stem cells to myeloproliferative disease mutation. Blood, 2016, 127, 2298-2309.	1.4	12
33	Cytokineâ€induced megakaryocytic differentiation is regulated by genomeâ€wide loss of a <scp>uSTAT</scp> transcriptional program. EMBO Journal, 2016, 35, 580-594.	7.8	66
34	The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica, 2016, 101, 115-208.	3.5	67
35	Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling. Nature Medicine, 2016, 22, 91-96.	30.7	37
36	RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability. Cell Reports, 2015, 13, 2345-2352.	6.4	28

#	Article	IF	CITATIONS
37	DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica, 2015, 100, e438-e442.	3.5	105
38	The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients. Blood, 2015, 125, 1679-1681.	1.4	35
39	Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell, 2015, 16, 712-724.	11.1	376
40	Effect of Mutation Order on Myeloproliferative Neoplasms. New England Journal of Medicine, 2015, 372, 601-612.	27.0	467
41	Effect of Mutation Order on Myeloproliferative Neoplasms. New England Journal of Medicine, 2015, 372, 1865-1866.	27.0	20
42	Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. Genome Research, 2015, 25, 814-824.	5.5	69
43	Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications, 2015, 6, 6691.	12.8	145
44	Assessment and Validation of the EQ-5D Among a Population of Myeloproliferative Neoplasm Patients. Blood, 2015, 126, 5179-5179.	1.4	2
45	Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. ELife, 2014, 3, .	6.0	318
46	Use of <scp>JAK</scp> inhibitors in the management of myelofibrosis: a revision of the <scp>B</scp> ritish <scp>C</scp> ommittee for <scp>S</scp> tandards in <scp>H</scp> aematology <scp>G</scp> uidelines for <scp>I</scp> nvestigation and <scp>M</scp> anagement of <scp>M</scp> yelofibrosis 2012. British Journal of Haematology, 2014, 167, 418-420.	2.5	37
47	The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature, 2014, 510, 268-272.	27.8	292
48	JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood, 2014, 123, 3139-3151.	1.4	77
49	<i>CALR</i> mutations in myeloproliferative neoplasms: Hidden behind the reticulum. American Journal of Hematology, 2014, 89, 453-456.	4.1	34
50	Inactivating CUX1 mutations promote tumorigenesis. Nature Genetics, 2014, 46, 33-38.	21.4	111
51	JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15190-15195.	7.1	35
52	BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia, 2014, 28, 88-97.	7.2	70
53	Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. Experimental Hematology, 2014, 42, 841-851.	0.4	17
54	Modification of British Committee for Standards in Haematology diagnostic criteria for essential thrombocythaemia. British Journal of Haematology, 2014, 167, 421-423.	2.5	40

#	Article	IF	CITATIONS
55	Nongenetic stochastic expansion of JAK2V617F-homozygous subclones in polycythemia vera?. Blood, 2014, 124, 3332-3334.	1.4	3
56	A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis. Cancer Cell, 2013, 24, 167-181.	16.8	244
57	Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013, 122, 3616-3627.	1.4	1,562
58	Methods for Detecting Mutations in the Human JAK2 Gene. Methods in Molecular Biology, 2013, 967, 115-131.	0.9	4
59	Molecular diagnosis of the myeloproliferative neoplasms: <scp>UK</scp> guidelines for the detection of <i><scp>JAK</scp>2 </i> <scp>V</scp> 617 <scp>F</scp> and other relevant mutations. British Journal of Haematology, 2013, 160, 25-34.	2.5	87
60	Impaired <i>In Vitro</i> Erythropoiesis following Deletion of the <i>Scl</i> (<i>Tal1</i>) +40 Enhancer Is Largely Compensated for <i>In Vivo</i> despite a Significant Reduction in Expression. Molecular and Cellular Biology, 2013, 33, 1254-1266.	2.3	10
61	Self-Renewal of Single Mouse Hematopoietic Stem Cells Is Reduced by JAK2V617F Without Compromising Progenitor Cell Expansion. PLoS Biology, 2013, 11, e1001576.	5.6	77
62	Diagnostic pathway for the investigation of thrombocytosis. British Journal of Haematology, 2013, 161, 604-606.	2.5	6
63	JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood, 2013, 122, 3787-3797.	1.4	114
64	Clonal analyses reveal associations of JAK2V617F homozygosity with hematologic features, age and gender in polycythemia vera and essential thrombocythemia. Haematologica, 2013, 98, 718-721.	3.5	34
65	Cooperativity of imprinted genes inactivated by acquired chromosome 20q deletions. Journal of Clinical Investigation, 2013, 123, 2169-2182.	8.2	36
66	The Genomic Landscape of Myeloproliferative Neoplasms: Somatic Calr Mutations in the Majority of JAK2-Wildtype Patients. Blood, 2013, 122, LBA-2-LBA-2.	1.4	1
67	Correlation of blood counts with vascular complications in essential thrombocythemia: analysis of the prospective PT1 cohort. Blood, 2012, 120, 1409-1411.	1.4	176
68	Three Distinct Patterns of Histone H3Y41 Phosphorylation Mark Active Genes. Cell Reports, 2012, 2, 470-477.	6.4	54
69	JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood, 2012, 120, 2704-2707.	1.4	94
70	Janus Kinase Deregulation in Leukemia and Lymphoma. Immunity, 2012, 36, 529-541.	14.3	107
71	Genotype-Phenotype Interactions in the Myeloproliferative Neoplasms. Hematology/Oncology Clinics of North America, 2012, 26, 993-1015.	2.2	7
72	Deletion of the Scl +19 enhancer increases the blood stem cell compartment without affecting the formation of mature blood lineages. Experimental Hematology, 2012, 40, 588-598.e1.	0.4	9

#	Article	IF	CITATIONS
73	Guideline for the diagnosis and management of myelofibrosis. British Journal of Haematology, 2012, 158, 453-471.	2.5	89
74	Mapping and Functional Characterisation of a CTCF-Dependent Insulator Element at the 3′ Border of the Murine Scl Transcriptional Domain. PLoS ONE, 2012, 7, e31484.	2.5	6
75	High Throughput Targeted Gene Sequencing in 738 Myelodysplastic Syndromes Patients Reveals Novel Oncogenic Genes, Rare Driver Mutations and Complex Molecular Signatures with Potential Impact for Patient Diagnosis and Prognosis in the Clinic. Blood, 2012, 120, LBA-5-LBA-5.	1.4	1
76	Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood, 2011, 118, 177-181.	1.4	61
77	Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood, 2011, 117, 2813-2816.	1.4	190
78	Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development. Cell, 2011, 144, 27-40.	28.9	2,020
79	Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators. Developmental Cell, 2011, 20, 597-609.	7.0	255
80	How I treat essential thrombocythemia. Blood, 2011, 117, 1472-1482.	1.4	92
81	Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood, 2011, 118, 1610-1621.	1.4	42
82	Response: essential thrombocythemia: seeing the wood for the trees. Blood, 2011, 118, 1180-1181.	1.4	0
83	Nuclear JAK2. Blood, 2011, 118, 6987-6988.	1.4	7
84	LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nature Cell Biology, 2011, 13, 13-21.	10.3	121
85	Mouse models of myeloproliferative neoplasms: JAK of all grades. DMM Disease Models and Mechanisms, 2011, 4, 311-317.	2.4	87
86	Molecular mechanisms associated with leukemic transformation of MPL-mutant myeloproliferative neoplasms. Haematologica, 2010, 95, 2153-2156.	3.5	19
87	Comparison of different criteria for the diagnosis of primary myelofibrosis reveals limited clinical utility for measurement of serum lactate dehydrogenase. Haematologica, 2010, 95, 1960-1963.	3.5	18
88	JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F–positive essential thrombocythemia. Blood, 2010, 116, 1528-1538.	1.4	195
89	Independently acquired biallelic JAK2 mutations are present in a minority of patients with essential thrombocythemia. Blood, 2010, 116, 1013-1014.	1.4	11
90	Two routes to leukemic transformation after a JAK2 mutation–positive myeloproliferative neoplasm. Blood, 2010, 115, 2891-2900.	1.4	269

#	Article	IF	CITATIONS
91	Distinct Clinical Phenotypes Associated with JAK2V617F Reflect Differential STAT1 Signaling. Cancer Cell, 2010, 18, 524-535.	16.8	150
92	Clinical utility of routine <i>MPL</i> exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. British Journal of Haematology, 2010, 149, 250-257.	2.5	98
93	Guideline for investigation and management of adults and children presenting with a thrombocytosis. British Journal of Haematology, 2010, 149, 352-375.	2.5	253
94	AT9283, a potent inhibitor of the Aurora kinases and Jak2, has therapeutic potential in myeloproliferative disorders. British Journal of Haematology, 2010, 150, 46-57.	2.5	46
95	<i>cis</i> -Regulatory Remodeling of the <i>SCL</i> Locus during Vertebrate Evolution. Molecular and Cellular Biology, 2010, 30, 5741-5751.	2.3	17
96	Somatic Mutations of <i>IDH1</i> and <i>IDH2</i> in the Leukemic Transformation of Myeloproliferative Neoplasms. New England Journal of Medicine, 2010, 362, 369-370.	27.0	268
97	The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. Blood, 2010, 115, 4517-4523.	1.4	93
98	SOCS3 tyrosine phosphorylation as a potential bio-marker for myeloproliferative neoplasms associated with mutant JAK2 kinases. Haematologica, 2009, 94, 576-580.	3.5	25
99	Pathogenesis and management of essential thrombocythemia. Hematology American Society of Hematology Education Program, 2009, 2009, 621-628.	2.5	31
100	Reply to K.N. Naresh. Journal of Clinical Oncology, 2009, 27, e177-e178.	1.6	0
101	Reticulin Accumulation in Essential Thrombocythemia: Prognostic Significance and Relationship to Therapy. Journal of Clinical Oncology, 2009, 27, 2991-2999.	1.6	116
102	Reply to J. Thiele et al. Journal of Clinical Oncology, 2009, 27, e222-e223.	1.6	7
103	Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. British Journal of Haematology, 2009, 144, 904-908.	2.5	75
104	JAK2 phosphorylates histone H3Y41 and excludes HP1 \hat{I} ± from chromatin. Nature, 2009, 461, 819-822.	27.8	564
105	ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood, 2009, 114, 1820-1830.	1.4	40
106	Physiological Levels of Jak2 V617F Result in Enhanced Megakaryocyte Differentiation, Proplatelet Formation and Platelet Reactivity Blood, 2009, 114, 226-226.	1.4	4
107	The JAK2 46/1 Haplotype Predisposes to Myeloproliferative Neoplasms Characterized by Diverse Mutations Blood, 2009, 114, 433-433.	1.4	2
108	Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet, The, 2008, 372, 1484-1492.	13.7	318

#	Article	IF	CITATIONS
109	Inhibition of the Bcl-x _L Deamidation Pathway in Myeloproliferative Disorders. New England Journal of Medicine, 2008, 359, 2778-2789.	27.0	84
110	Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13081-13086.	7.1	320
111	A novel mode of enhancer evolution: The Tal1 stem cell enhancer recruited a MIR element to specifically boost its activity. Genome Research, 2008, 18, 1422-1432.	5.5	31
112	Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica, 2008, 93, 1635-1644.	3.5	74
113	Rapid identification of JAK2 exon 12 mutations using high resolution melting analysis. Haematologica, 2008, 93, 1560-1564.	3.5	49
114	Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood, 2008, 111, 60-70.	1.4	229
115	Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood, 2008, 111, 5400-5402.	1.4	113
116	MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood, 2008, 112, 141-149.	1.4	371
117	Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17692-17697.	7.1	208
118	The <i>SCL</i> +40 Enhancer Targets the Midbrain Together with Primitive and Definitive Hematopoiesis and Is Regulated by SCL and GATA Proteins. Molecular and Cellular Biology, 2007, 27, 7206-7219.	2.3	39
119	Real-time PCR mapping of DNasel-hypersensitive sites using a novel ligation-mediated amplification technique. Nucleic Acids Research, 2007, 35, e56-e56.	14.5	17
120	The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 840-845.	7.1	107
121	The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood, 2007, 109, 2389-2398.	1.4	131
122	The paralogous hematopoietic regulators Lyl1 and Scl are coregulated by Ets and GATA factors, but Lyl1 cannot rescue the early Scl–/– phenotype. Blood, 2007, 109, 1908-1916.	1.4	71
123	Methuselah conundrum: MPDs in the elderly. Blood, 2007, 110, 1409-1409.	1.4	0
124	<i>JAK2</i> Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. New England Journal of Medicine, 2007, 356, 459-468.	27.0	1,173
125	The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels. Haematologica, 2007, 92, 1607-1614.	3.5	84
126	Temporal regulation of Cre-recombinase activity in Scl-positive neurons of the central nervous system. Genesis, 2007, 45, 145-151.	1.6	6

8

#	Article	IF	CITATIONS
127	Patterns of somatic mutation in human cancer genomes. Nature, 2007, 446, 153-158.	27.8	2,802
128	Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. British Journal of Haematology, 2007, 138, 821-822.	2.5	99
129	Prevalance of JAK2 V617F and exon 12 mutations in polycythaemia vera. British Journal of Haematology, 2007, 139, 511-512.	2.5	57
130	AT9283, a Potent Inhibitor of JAK2, Is Active in JAK2 V617F Myeloproliferative Disease Models Blood, 2007, 110, 3537-3537.	1.4	4
131	Methods for the Detection of the <i>JAK2</i> V617F Mutation in Human Myeloproliferative Disorders. , 2006, 125, 253-264.		26
132	The Long-term Outlook for Essential Thrombocythemia. Mayo Clinic Proceedings, 2006, 81, 157-158.	3.0	4
133	Essential thrombocythaemia. Best Practice and Research in Clinical Haematology, 2006, 19, 439-453.	1.7	12
134	The Myeloproliferative Disorders. New England Journal of Medicine, 2006, 355, 2452-2466.	27.0	619
135	V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood, 2006, 107, 2098-2100.	1.4	194
136	Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood, 2006, 108, 3548-3555.	1.4	302
137	Endoglin expression in the endothelium is regulated by Fli-1, Erg, and Elf-1 acting on the promoter and a –8-kb enhancer. Blood, 2006, 107, 4737-4745.	1.4	62
138	Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood, 2006, 108, 2435-2437.	1.4	267
139	Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray. British Journal of Haematology, 2006, 135, 184-197.	2.5	65
140	Transcriptional Link between Blood and Bone: the Stem Cell Leukemia Gene and Its +19 Stem Cell Enhancer Are Active in Bone Cells. Molecular and Cellular Biology, 2006, 26, 2615-2625.	2.3	17
141	DNA Damage–Induced Bcl-xL Deamidation Is Mediated by NHE-1 Antiport Regulated Intracellular pH. PLoS Biology, 2006, 5, e1.	5.6	88
142	Identifying gene regulatory elements by genomic microarray mapping of DNasel hypersensitive sites. Genome Research, 2006, 16, 1310-1319.	5.5	34
143	Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood, 2005, 105, 324-334.	1.4	192
144	In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood, 2005, 105, 2724-2732.	1.4	162

#	Article	IF	CITATIONS
145	Fli1, Elf1, and Ets1 regulate the proximal promoter of the LMO2 gene in endothelial cells. Blood, 2005, 106, 2680-2687.	1.4	58
146	Transgenic Analysis of the Stem Cell Leukemia +19 Stem Cell Enhancer in Adult and Embryonic Hematopoietic and Endothelial Cells. Stem Cells, 2005, 23, 1378-1388.	3.2	35
147	A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nature Genetics, 2005, 37, 590-592.	21.4	318
148	RFP represses transcriptional activation by bHLH transcription factors. Oncogene, 2005, 24, 6729-6736.	5.9	11
149	Genome-wide identification of cis -regulatory sequences controlling blood and endothelial development. Human Molecular Genetics, 2005, 14, 595-601.	2.9	79
150	Somatic Mutations of the Protein Kinase Gene Family in Human Lung Cancer. Cancer Research, 2005, 65, 7591-7595.	0.9	429
151	Transcriptional Regulation of the SCL Locus: Identification of an Enhancer That Targets the Primitive Erythroid Lineage In Vivo. Molecular and Cellular Biology, 2005, 25, 5215-5225.	2.3	55
152	Management of Polycythemia Vera and Essential Thrombocythemia. Hematology American Society of Hematology Education Program, 2005, 2005, 201-208.	2.5	45
153	Directing oncogenic fusion genes into stem cells via an SCL enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1133-1138.	7.1	19
154	Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet, The, 2005, 366, 1945-1953.	13.7	620
155	Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, The, 2005, 365, 1054-1061.	13.7	3,100
156	The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood, 2005, 106, 2920-2921.	1.4	150
157	L3mbtl, the mouse orthologue of the imprinted L3MBTL, displays a complex pattern of alternative splicing and escapes genomic imprinting. Genomics, 2005, 86, 489-494.	2.9	20
158	Hydroxyurea Compared with Anagrelide in High-Risk Essential Thrombocythemia. New England Journal of Medicine, 2005, 353, 33-45.	27.0	838
159	Transcriptional Regulation of the LMO2 T-Cell Leukaemia Oncogene Blood, 2005, 106, 2728-2728.	1.4	0
160	Analysis of Multiple Genomic Sequence Alignments: A Web Resource, Online Tools, and Lessons Learned From Analysis of Mammalian SCL Loci. Genome Research, 2004, 14, 313-318.	5.5	44
161	The scl +18/19 Stem Cell Enhancer Is Not Required for Hematopoiesis: Identification of a 5′ Bifunctional Hematopoietic-Endothelial Enhancer Bound by Fli-1 and Elf-1. Molecular and Cellular Biology, 2004, 24, 1870-1883.	2.3	83
162	Imprinting of the human <i>L3MBTL</i> gene, a polycomb family member located in a region of chromosome 20 deleted in human myeloid malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7341-7346.	7.1	68

#	Article	IF	CITATIONS
163	Management of the myeloproliferative disorders : distinguishing data from dogma. The Hematology Journal, 2004, 5, S126-S132.	1.4	15
164	Pain from myelofibrosis treated with regular pamidronate. British Journal of Haematology, 2004, 127, 366-367.	2.5	4
165	Characterization of the imprinted polycomb gene <i>L3MBTL</i> , a candidate 20q tumour suppressor gene, in patients with myeloid malignancies. British Journal of Haematology, 2004, 127, 509-518.	2.5	36
166	Kidney, blood, and endothelium: Developmental expression of stem cell leukemia during nephrogenesis. Kidney International, 2004, 65, 1162-1169.	5.2	22
167	Randomized comparison of low-dose versus high-dose interferon-alfa in chronic myeloid leukemia: prospective collaboration of 3 joint trials by the MRC and HOVON groups. Blood, 2004, 103, 4408-4415.	1.4	34
168	Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood, 2004, 104, 1769-1777.	1.4	264
169	Cytogenetics of Myeloproliferative Disorders. , 2004, , 28-37.		Ο
170	Loss of Heterozygosity on Chromosome 9p24 Is the Most Frequent Chromosomal Aberration in Polycythemia Vera and Idiopathic Myelofibrosis Blood, 2004, 104, 2425-2425.	1.4	9
171	In Vivo Fate Tracing Studies Using the SCL Stem Cell Enhancer: Embryonic Hematopoietic Stem Cells Significantly Contribute to Adult Hematopoiesis Blood, 2004, 104, 559-559.	1.4	1
172	Genomic imbalances in CML blast crisis: 8q24.12-q24.13 Segment identified as a common region of over-representation. Genes Chromosomes and Cancer, 2003, 37, 346-358.	2.8	19
173	Double Philadelphia masquerading as chromosome 20q deletion - a new recurrent abnormality in chronic myeloid leukaemia blast crisis. British Journal of Haematology, 2003, 123, 442-448.	2.5	3
174	Comparative and functional analyses of LYL1 loci establish marsupial sequences as a model for phylogenetic footprinting☆ ☆Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession No. AL731834 Genomics, 2003, 81, 249-259.	2.9	42
175	Essential thrombocythemia. Hematology/Oncology Clinics of North America, 2003, 17, 1175-1190.	2.2	29
176	Manipulation of Mouse Hematopoietic Progenitors by Specific Retroviral Infection. Journal of Biological Chemistry, 2003, 278, 43556-43563.	3.4	13
177	Imatinib improves but may not fully reverse the poor prognosis of patients with CML with derivative chromosome 9 deletions. Blood, 2003, 102, 2205-2212.	1.4	119
178	Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood, 2003, 102, 1160-1168.	1.4	116
179	Quantification of PRV-1 mRNA distinguishes polycythemia vera from secondary erythrocytosis. Blood, 2003, 102, 3569-3574.	1.4	79
180	The Role of the Stem Cell Leukemia (SCL) Gene in Hematopoietic and Endothelial Lineage Specification. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 195-206.	1.8	26

#	Article	IF	CITATIONS
181	Analyses of the Extent of Shared Synteny and Conserved Gene Orders between the Genome of <i>Fugu rubripes</i> and Human 20q. Genome Research, 2002, 12, 776-784.	5.5	46
182	Nonlinear partial differential equations and applications: Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15468-15473.	7.1	156
183	Transcriptional Regulation of the Stem Cell Leukemia Gene (SCL) Comparative Analysis of Five Vertebrate SCL Loci. Genome Research, 2002, 12, 749-759.	5.5	87
184	Rescue of the lethal sclâ^'/â^' phenotype by the human SCL locus. Blood, 2002, 99, 3931-3938.	1.4	8
185	Derivative chromosome 9 deletions in chronic myeloid leukemia: poor prognosis is not associated with loss of ABL-BCRexpression, elevated BCR-ABL levels, or karyotypic instability. Blood, 2002, 99, 4547-4553.	1.4	74
186	Deletions of the derivative chromosome 9 do not account for the poor prognosis associated with Philadelphia-positive acute lymphoblastic leukemia. Blood, 2002, 99, 2274-2275.	1.4	11
187	Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO Journal, 2002, 21, 3039-3050.	7.8	194
188	Myeloproliferative disorders. Best Practice and Research in Clinical Haematology, 2001, 14, 531-551.	1.7	39
189	Variant Philadelphia translocations in chronic myeloid leukaemia can mimic typical blast crisis chromosome abnormalities or classic t(9;22): a report of two cases. British Journal of Haematology, 2001, 113, 439-442.	2.5	9
190	Mutation and methylation analysis of the transforming growth factor \hat{I}^2 receptor II gene in polycythaemia vera. British Journal of Haematology, 2001, 115, 872-880.	2.5	13
191	Regulation of the stem cell leukemia (SCL) gene: A tale of two fishes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6747-6752.	7.1	47
192	Long-Range Comparison of Human and Mouse <i>SCL</i> Loci: Localized Regions of Sensitivity to Restriction Endonucleases Correspond Precisely with Peaks of Conserved Noncoding Sequences. Genome Research, 2001, 11, 87-97.	5.5	81
193	Selective rescue of early haematopoietic progenitors in Scl–/– mice by expressing Scl under the control of a stem cell enhancer. Development (Cambridge), 2001, 128, 4815-4827.	2.5	71
194	Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnology, 2000, 18, 181-186.	17.5	162
195	Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. Oncogene, 2000, 19, 3902-3913.	5.9	151
196	Cytogenetics of the Chronic Myeloid Leukemia-Derived Cell Line K562. Cancer Genetics and Cytogenetics, 2000, 118, 1-8.	1.0	51
197	The SCL Gene: From Case Report to Critical Hematopoietic Regulator. Blood, 1999, 93, 2760-2770.	1.4	169
198	Comparative Analysis of G-Banding, Chromosome Painting, Locus-Specific Fluorescence In Situ Hybridization, and Comparative Genomic Hybridization in Chronic Myeloid Leukemia Blast Crisis. Cancer Genetics and Cytogenetics, 1999, 111, 7-17.	1.0	41

#	Article	IF	CITATIONS
199	The stem cell leukaemia (SCL) gene: a critical regulator of haemopoietic and vascular development. International Journal of Biochemistry and Cell Biology, 1999, 31, 1193-1207.	2.8	14
200	The SCL Gene: From Case Report to Critical Hematopoietic Regulator. Blood, 1999, 93, 2760-2770.	1.4	40
201	The SCL gene specifies haemangioblast development from early mesoderm. EMBO Journal, 1998, 17, 4029-4045.	7.8	412
202	7 Molecular genetics and cytogenetics of myeloproliferative disorders. Best Practice and Research: Clinical Haematology, 1998, 11, 819-848.	1.1	79
203	The PufferfishSLP-1Gene, a New Member of theSCL/TAL-1Family of Transcription Factors. Genomics, 1998, 48, 52-62.	2.9	14
204	A Detailed Physical and Transcriptional Map of the Region of Chromosome 20 That Is Deleted in Myeloproliferative Disorders and Refinement of the Common Deleted Region. Genomics, 1998, 49, 351-362.	2.9	47
205	Transcriptional Regulation of the Stem Cell Leukemia Gene by PU.1 and Elf-1. Journal of Biological Chemistry, 1998, 273, 29032-29042.	3.4	55
206	Distinct Mechanisms Direct SCL/tal-1 Expression in Erythroid Cells and CD34 Positive Primitive Myeloid Cells. Journal of Biological Chemistry, 1997, 272, 8781-8790.	3.4	49
207	The gene encoding hematopoietic cell phosphatase (SHP-1) is structurally and transcriptionally intact in polycythemia vera. Oncogene, 1997, 14, 1215-1222.	5.9	49
208	Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements. Oncogene, 1997, 15, 2419-2428.	5.9	58
209	Clonal haemopoiesis in normal elderly women: implications for the myeloproliferative disorders and myelodysplastic syndromes. British Journal of Haematology, 1997, 97, 920-926.	2.5	166
210	The humanCD40gene lies within chromosome 20q deletions associated with myeloid malignancies. British Journal of Haematology, 1996, 92, 127-130.	2.5	6
211	Retinoic acid and the differentiation of lymphohaemopoietic stem cells. BioEssays, 1995, 17, 187-189.	2.5	8

212 Myeloproliferative neoplasms. , 0, , 283-306.

0