
Vincenzo Fiore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7082314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on basalt fibre and its composites. Composites Part B: Engineering, 2015, 74, 74-94.	5.9	859
2	The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 2015, 68, 14-21.	5.9	389
3	Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers, 2014, 106, 77-83.	5.1	300
4	Glass–basalt/epoxy hybrid composites for marine applications. Materials & Design, 2011, 32, 2091-2099.	5.1	281
5	A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering, 2016, 85, 150-160.	5.9	237
6	Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Composites Science and Technology, 2011, 71, 1138-1144.	3.8	131
7	Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. Polypropylene). Construction and Building Materials, 2014, 58, 159-165.	3.2	129
8	PLA based biocomposites reinforced with Arundo donax fillers. Composites Science and Technology, 2014, 105, 110-117.	3.8	107
9	Effect of external basalt layers on durability behaviour of flax reinforced composites. Composites Part B: Engineering, 2016, 84, 258-265.	5.9	106
10	Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Materials & Design, 2014, 57, 456-464.	5.1	104
11	Mechanical behavior of carbon/flax hybrid composites for structural applications. Journal of Composite Materials, 2012, 46, 2089-2096.	1.2	101
12	Behavior in compression of concrete cylinders externally wrapped with basalt fibers. Composites Part B: Engineering, 2015, 69, 576-586.	5.9	98
13	Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering, 2016, 94, 167-175.	5.9	98
14	A systematic literature review on less common natural fibres and their biocomposites. Journal of Cleaner Production, 2018, 195, 240-267.	4.6	90
15	Effect of sodium bicarbonate treatment on mechanical properties of flax-reinforced epoxy composite materials. Journal of Composite Materials, 2018, 52, 1061-1072.	1.2	77
16	Aging resistance of bio-epoxy jute-basalt hybrid composites as novel multilayer structures for cladding. Composite Structures, 2017, 160, 1319-1328.	3.1	73
17	Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites. Polymers, 2018, 10, 18.	2.0	68
18	On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials. Mechanics of Materials, 2014, 69, 63-70.	1.7	67

#	Article	IF	CITATIONS
19	Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. Journal of Applied Polymer Science, 2019, 136, 47203.	1.3	66
20	Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response. Composites Part B: Engineering, 2017, 116, 99-112.	5.9	58
21	Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour. Materials, 2015, 8, 7536-7548.	1.3	57
22	Salt spray fog ageing of hybrid composite/metal rivet joints for automotive applications. Composites Part B: Engineering, 2017, 108, 65-74.	5.9	57
23	Effect of areal weight and chemical treatment on the mechanical properties of bidirectional flax fabrics reinforced composites. Materials & Design, 2010, 31, 4098-4103.	5.1	55
24	Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques. Composites Part B: Engineering, 2016, 104, 35-43.	5.9	55
25	Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment. Polymer Testing, 2019, 80, 106100.	2.3	55
26	Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties. Composites Part B: Engineering, 2016, 93, 35-42.	5.9	53
27	New Lignocellulosic Aristida adscensionis Fibers as Novel Reinforcement for Composite Materials: Extraction, Characterization and Weibull Distribution Analysis. Journal of Polymers and the Environment, 2020, 28, 803-811.	2.4	53
28	Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites. Materials, 2016, 9, 351.	1.3	49
29	New Polylactic Acid Composites Reinforced with Artichoke Fibers. Materials, 2015, 8, 7770-7779.	1.3	47
30	On the mechanical behavior of BFRP to aluminum AA6086 mixed joints. Composites Part B: Engineering, 2013, 48, 79-87.	5.9	45
31	Effect of Stacking Sequence and Sodium Bicarbonate Treatment on Quasi-Static and Dynamic Mechanical Properties of Flax/Jute Epoxy-Based Composites. Materials, 2019, 12, 1363.	1.3	43
32	Bearing strength and failure behavior of pinned hybrid glass-flax composite laminates. Polymer Testing, 2018, 69, 310-319.	2.3	42
33	Mechanical behaviour and failure modes of metal to composite adhesive joints for nautical applications. International Journal of Advanced Manufacturing Technology, 2011, 53, 593-600.	1.5	39
34	Failure Map of Composite Laminate Mechanical Joint. Journal of Composite Materials, 2007, 41, 951-964.	1.2	38
35	Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment. Polymers, 2020, 12, 716.	2.0	38
36	Durability of Basalt/Hemp Hybrid Thermoplastic Composites. Polymers, 2019, 11, 603.	2.0	34

#	Article	IF	CITATIONS
37	Synergistic effect of fiber content and length on mechanical and water absorption behaviors of <i>Phoenix</i> sp. fiber-reinforced epoxy composites. Journal of Industrial Textiles, 2017, 47, 211-232.	1.1	33
38	Effect of Sheep Wool Fibers on Thermal Insulation and Mechanical Properties of Cement-Based Composites. Journal of Natural Fibers, 2020, 17, 1532-1543.	1.7	33
39	Effect of plasma treatment on mechanical and thermal properties of marble powder/epoxy composites. Polymer Composites, 2018, 39, 309-317.	2.3	30
40	A DIC-based study of flexural behaviour of roving/mat/roving pultruded composites. Composite Structures, 2015, 131, 82-89.	3.1	28
41	Flax, Basalt, E-Glass FRP and Their Hybrid FRP Strengthened Wood Beams: An Experimental Study. Polymers, 2019, 11, 1255.	2.0	27
42	Experimental design of the bearing performances of flax fiber reinforced epoxy composites by a failure map. Composites Part B: Engineering, 2018, 148, 40-48.	5.9	25
43	Pinned Hybrid Glass-Flax Composite Laminates Aged in Salt-Fog Environment: Mechanical Durability. Polymers, 2020, 12, 40.	2.0	24
44	Evolution of the bearing failure map of pinned flax composite laminates aged in marine environment. Composites Part B: Engineering, 2020, 187, 107864.	5.9	24
45	Effect of curing time on the performances of hybrid/mixed joints. Composites Part B: Engineering, 2013, 45, 911-918.	5.9	23
46	Effects of anodizing surface treatment on the mechanical strength of aluminum alloy 5083 to fibre reinforced composites adhesive joints. International Journal of Adhesion and Adhesives, 2021, 108, 102868.	1.4	21
47	Creep Behavior of Poly(lactic acid) Based Biocomposites. Materials, 2017, 10, 395.	1.3	20
48	Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites. , 2013, , 88-121.		19
49	PBAT Based Composites Reinforced with Microcrystalline Cellulose Obtained from Softwood Almond Shells. Polymers, 2021, 13, 2643.	2.0	19
50	Three-Point Flexural Behaviour of GFRP Sandwich Composites: A Failure Map. Advanced Composite Materials, 2010, 19, 79-90.	1.0	17
51	On the response of flax fiber reinforced composites under salt-fog/dry conditions: Reversible and irreversible performances degradation. Composites Part B: Engineering, 2022, 230, 109535.	5.9	17
52	The durability of basalt fibres reinforced polymer (BFRP) panels for cladding. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2053-2064.	1.3	16
53	Assessment of performance degradation of hybrid flax-glass fiber reinforced epoxy composites during a salt spray fog/dry aging cycle. Composites Part B: Engineering, 2022, 238, 109897.	5.9	16
54	Effect of Silane Coupling Treatment on the Adhesion between Polyamide and Epoxy Based Composites Reinforced with Carbon Fibers. Fibers, 2020, 8, 48.	1.8	14

#	Article	IF	CITATIONS
55	Experimental assessment of the shield-to-salt-fog properties of basalt and glass fiber reinforced composites in cork core sandwich panels applications. Composites Part B: Engineering, 2018, 144, 29-36.	5.9	13
56	Assessment of Arundo donax Fibers for Oil Spill Recovery Applications. Fibers, 2019, 7, 75.	1.8	13
57	Bending test for capturing the vivid behavior of giant reeds, returned through a proper fractional visco-elastic model. Mechanics of Materials, 2015, 89, 159-168.	1.7	12
58	Pull-off adhesion of hybrid glass-steel adhesive joints in salt fog environment. Journal of Adhesion Science and Technology, 2016, 30, 2157-2174.	1.4	12
59	Failure maps to assess bearing performances of glass composite laminates. Polymer Composites, 2019, 40, 1087-1096.	2.3	11
60	Effect of UD Carbon on the Specific Mechanical Properties of Glass Mat Composites for Marine Applications. Journal of Composite Materials, 2010, 44, 1351-1364.	1.2	9
61	An Aging Evaluation of the Bearing Performances of Glass Fiber Composite Laminate in Salt Spray Fog Environment. Fibers, 2019, 7, 96.	1.8	9
62	An Innovative Treatment Based on Sodium Citrate for Improving the Mechanical Performances of Flax Fiber Reinforced Composites. Polymers, 2021, 13, 559.	2.0	9
63	In situ monitoring of moisture uptake of flax fiber reinforced composites under humid/dry conditions. Journal of Applied Polymer Science, 2022, 139, 51969.	1.3	9
64	Evaluation of aging behavior under salt-fog spray conditions of green sandwich structures. Journal of Natural Fibers, 2019, 16, 977-986.	1.7	8
65	A simplified predictive approach to assess the mechanical behavior of pinned hybrid composites aged in salt-fog environment. Composite Structures, 2020, 249, 112589.	3.1	8
66	Multifunctional polyurethane foams with thermal energy storage/release capability. Journal of Thermal Analysis and Calorimetry, 2022, 147, 297-313.	2.0	7
67	Surface Modified Arundo Donax Natural Fibers for Oil Spill Recovery. Journal of Natural Fibers, 2022, 19, 8230-8245.	1.7	7
68	Effectiveness of Sodium Acetate Treatment on the Mechanical Properties and Morphology of Natural Fiber-Reinforced Composites. Journal of Composites Science, 2022, 6, 5.	1.4	7
69	Structural and Mechanical Modification Induced by Water Content in Giant Wild Reed (A. donaxL.). ACS Omega, 2018, 3, 18510-18517.	1.6	6
70	Effect of Glass Fiber Hybridization on the Durability in Salt-Fog Environment of Pinned Flax Composites. Polymers, 2021, 13, 4201.	2.0	6
71	The Use of Waste Hazelnut Shells as a Reinforcement in the Development of Green Biocomposites. Polymers, 2022, 14, 2151.	2.0	6
72	Influence of anodizing surface treatment on the aging behavior in salt-fog environment of aluminum alloy 5083 to fiber reinforced composites adhesive ioints. Journal of Adhesion, 2023, 99, 277-296.	1.8	5

#	Article	IF	CITATIONS
73	Influence of resin viscosity and vacuum level on mechanical performance of sandwich structures manufactured by vacuum bagging. Advances in Polymer Technology, 2010, 29, 20-30.	0.8	4
74	Evaluation of continuous filament mat influence on the bending behaviour of GFRP pultruded material via Electronic Speckle Pattern Interferometry. Archives of Civil and Mechanical Engineering, 2017, 17, 169-177.	1.9	4
75	Natural Fibres and Their Composites. Polymers, 2020, 12, 2380.	2.0	4
76	Photooxidation Behavior of a LDPE/Clay Nanocomposite Monitored through Creep Measurements. Polymers, 2017, 9, 308.	2.0	3
77	The effects of water absorption and salt fog exposure on agglomerated cork compressive response. European Journal of Wood and Wood Products, 0, , 1.	1.3	2
78	Bending test for capturing the fractional visco-elastic parameters: Theoretical and experimental investigation on giant reeds. , 2014, , .		1
79	Speckle Interferometry Analysis of Full-bending Behavior of GFRP Pultruded Material. Procedia Engineering, 2016, 161, 439-444.	1.2	1
80	Arundo Donax Fibers as Green Materials for Oil Spill Recovery. , 2020, , 259-283.		1