
Pedro Jesús GarcÃ-a Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081872/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Processing Technology, 2015, 133, 152-160.	3.7	118
2	Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. Journal of Food Engineering, 2016, 183, 39-49.	2.7	110
3	Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition, 2018, 58, 3097-3129.	5.4	109
4	Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annual Review of Food Science and Technology, 2018, 9, 525-549.	5.1	105
5	Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International, 2014, 65, 469-476.	2.9	99
6	Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry, 2016, 203, 124-135.	4.2	92
7	Optimization of biodiesel production from waste fish oil. Renewable Energy, 2014, 68, 618-624.	4.3	75
8	Influence of Casein–Phospholipid Combinations as Emulsifier on the Physical and Oxidative Stability of Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 1142-1152.	2.4	74
9	AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides. Scientific Reports, 2020, 10, 21471.	1.6	71
10	Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 2017, 69, 273-285.	5.6	58
11	Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials. Journal of Food Engineering, 2018, 231, 42-53.	2.7	57
12	Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards. Journal of Functional Foods, 2015, 18, 95-105.	1.6	50
13	Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: effect of enzymatic treatment and degree of hydrolysis. Journal of the Science of Food and Agriculture, 2017, 97, 299-308.	1.7	48
14	Emulsifying peptides from potato protein predicted by bioinformatics: Stabilization of fish oil-in-water emulsions. Food Hydrocolloids, 2020, 101, 105529.	5.6	45
15	Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil. Journal of Food Engineering, 2019, 263, 348-358.	2.7	42
16	Identification of emulsifier potato peptides by bioinformatics: application to omega-3 delivery emulsions and release from potato industry side streams. Scientific Reports, 2020, 10, 690.	1.6	41
17	The structure, viscoelasticity and charge of potato peptides adsorbed at the oil-water interface determine the physicochemical stability of fish oil-in-water emulsions. Food Hydrocolloids, 2021, 115, 106605.	5.6	38
18	Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and phosphatidylcholine as emulsifiers. Food Chemistry, 2019, 276, 110-118.	4.2	36

#	Article	IF	CITATIONS
19	Development of Fish Oil-Loaded Microcapsules Containing Whey Protein Hydrolysate as Film-Forming Material for Fortification of Low-Fat Mayonnaise. Foods, 2020, 9, 545.	1.9	34
20	Development of kafirin-based nanocapsules by electrospraying for encapsulation of fish oil. LWT - Food Science and Technology, 2021, 136, 110297.	2.5	33
21	Protein derived emulsifiers with antioxidant activity for stabilization of omega-3 emulsions. Food Chemistry, 2020, 329, 127148.	4.2	30
22	Antioxidant peptides derived from potato, seaweed, microbial and spinach proteins: Oxidative stability of 5% fish oil-in-water emulsions. Food Chemistry, 2022, 385, 132699.	4.2	29
23	Physical and oxidative stability of fish oil-in-water emulsions fortified with enzymatic hydrolysates from common carp (Cyprinus carpio) roe. Food Chemistry, 2017, 237, 1048-1057.	4.2	28
24	Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions. Food Chemistry, 2018, 255, 290-299.	4.2	28
25	Oxygen permeability and oxidative stability of fish oil-loaded electrosprayed capsules measured by Electron Spin Resonance: Effect of dextran and glucose syrup as main encapsulating materials. Food Chemistry, 2019, 287, 287-294.	4.2	28
26	Discarded species in the west Mediterranean sea as sources of omegaâ€3 <scp>PUFA</scp> . European Journal of Lipid Science and Technology, 2013, 115, 982-989.	1.0	27
27	Optimization of bleaching conditions for sardine oil. Journal of Food Engineering, 2013, 116, 606-612.	2.7	26
28	Influence of the parameters of the Rancimat test on the determination of the oxidative stability index of cod liver oil. LWT - Food Science and Technology, 2013, 51, 303-308.	2.5	25
29	Modified phosphatidylcholine with different alkyl chain length and covalently attached caffeic acid affects the physical and oxidative stability of omega-3 delivery 70% oil-in-water emulsions. Food Chemistry, 2019, 289, 490-499.	4.2	25
30	Stabilization of Fish Oil‣oaded Electrosprayed Capsules with Seaweed and Commercial Natural Antioxidants: Effect on the Oxidative Stability of Capsuleâ€Enriched Mayonnaise. European Journal of Lipid Science and Technology, 2019, 121, 1800396.	1.0	23
31	Effects of Modified DATEMs with Different Alkyl Chain Lengths on Improving Oxidative and Physical Stability of 70% Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 12512-12520.	2.4	22
32	pH influences the interfacial properties of blue whiting (M. poutassou) and whey protein hydrolysates determining the physical stability of fish oil-in-water emulsions. Food Hydrocolloids, 2022, 122, 107075.	5.6	22
33	Lipid characterization and properties of protein hydrolysates obtained from discarded Mediterranean fish species. Journal of the Science of Food and Agriculture, 2013, 93, 3777-3784.	1.7	21
34	Effect of digestive enzymes on the bioactive properties of goat milk protein hydrolysates. International Dairy Journal, 2016, 54, 21-28.	1.5	21
35	Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chemistry, 2021, 362, 130217.	4.2	21
36	Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea. Food and Function, 2015, 6, 1261-1267.	2.1	19

#	Article	IF	CITATIONS
37	Interfacial structure of 70% fish oil-in-water emulsions stabilized with combinations of sodium caseinate and phosphatidylcholine. Journal of Colloid and Interface Science, 2019, 554, 183-190.	5.0	19
38	Optimisation of oil extraction from sardine (<i><scp>S</scp>ardina pilchardus</i>) by hydraulic pressing. International Journal of Food Science and Technology, 2014, 49, 2167-2175.	1.3	16
39	Enrichment of mayonnaise with a high fat fish oil-in-water emulsion stabilized with modified DATEM C14 enhances oxidative stability. Food Chemistry, 2021, 341, 128141.	4.2	15
40	Nutritional indexes, fatty acids profile, and regiodistribution of oil extracted from four discarded species of the Alboran Sea: Seasonal effects. European Journal of Lipid Science and Technology, 2016, 118, 1409-1415.	1.0	14
41	Oxidative stability of pullulan electrospun fibers containing fish oil: Effect of oil content and natural antioxidants addition. European Journal of Lipid Science and Technology, 2017, 119, 1600305.	1.0	13
42	Structure of whey protein hydrolysate used as emulsifier in wet and dried oil delivery systems: Effect of pH and drying processing. Food Chemistry, 2022, 390, 133169.	4.2	13
43	Physical and oxidative stability of high fat fish oilâ€inâ€water emulsions stabilized with combinations of sodium caseinate and sodium alginate. European Journal of Lipid Science and Technology, 2017, 119, 1600484.	1.0	11
44	Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. , 2018, , 447-479.		9
45	Small-Angle Neutron Scattering Study of High Fat Fish Oil-In-Water Emulsion Stabilized with Sodium Caseinate and Phosphatidylcholine. Langmuir, 2020, 36, 2300-2306.	1.6	9
46	Production and characterization of ice cream with high content in oleic and linoleic fatty acids. European Journal of Lipid Science and Technology, 2016, 118, 1846-1852.	1.0	5
47	Encapsulation of L-5-methyltetrahydrofolate by electrospraying for food applications. Journal of Food Engineering, 2020, 277, 109901.	2.7	3
48	The Role of Antioxidants and Encapsulation Processes in Omega-3 Stabilization. Food Bioactive Ingredients, 2020, , 339-386.	0.3	3
49	Fish Discards as Source of Health-Promoting Biopeptides. , 2018, , 177-204.		2
50	Food enrichment with omega-3 polyunsaturated fatty acids. , 2021, , 395-425.		2
51	Lipid oxidation and traditional methods for evaluation. , 2021, , 183-200.		1
52	High fat (>50%) oil-in-water emulsions as omega-3 delivery systems. , 2021, , 255-273.		0
53	Omega-3 nano-microencapsulates produced by electrohydrodynamic processing. , 2021, , 345-370.		0