
Cristina Cejudo-Bastante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Escape ClassRoom: Can You Solve a Crime Using the Analytical Process?. Journal of Chemical Education, 2019, 96, 267-273.	1.1	59
2	Supercritical impregnation of food packaging films to provide antioxidant properties. Journal of Supercritical Fluids, 2017, 128, 200-207.	1.6	53
3	Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting. Food Hydrocolloids, 2021, 117, 106709.	5.6	52
4	Characterization of olive leaf extract polyphenols loaded by supercritical solvent impregnation into PET/PP food packaging films. Journal of Supercritical Fluids, 2018, 140, 196-206.	1.6	43
5	Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants, 2021, 10, 216.	2.2	33
6	Supercritical impregnation of olive leaf extract to obtain bioactive films effective in cherry tomato preservation. Food Packaging and Shelf Life, 2019, 21, 100338.	3.3	27
7	Chemical and sensory characteristics of orange based vinegar. Journal of Food Science and Technology, 2016, 53, 3147-3156.	1.4	23
8	Optical, structural, mechanical and thermal characterization of antioxidant ethylene vinyl alcohol copolymer films containing betalain-rich beetroot. Food Packaging and Shelf Life, 2020, 24, 100502.	3.3	22
9	Comparative study of submerged and surface culture acetification process for orange vinegar. Journal of the Science of Food and Agriculture, 2018, 98, 1052-1060.	1.7	20
10	Effect of supercritical CO2 and olive leaf extract on the structural, thermal and mechanical properties of an impregnated food packaging film. Journal of Supercritical Fluids, 2019, 145, 181-191.	1.6	16
11	Supercritical Impregnation of Ketoprofen into Polylactic Acid for Biomedical Application: Analysis and Modeling of the Release Kinetic. Polymers, 2021, 13, 1982.	2.0	15
12	Supercritical Impregnation of PLA Filaments with Mango Leaf Extract to Manufacture Functionalized Biomedical Devices by 3D Printing. Polymers, 2021, 13, 2125.	2.0	15
13	Health-Promoting Properties of Borage Seed Oil Fractionated by Supercritical Carbon Dioxide Extraction. Foods, 2021, 10, 2471.	1.9	8
14	Application of Citrus By-Products in the Production of Active Food Packaging. Antioxidants, 2022, 11, 738.	2.2	7
15	Supercritical Impregnation of Mango Leaf Extract into PLA 3D-Printed Devices and Evaluation of Their Biocompatibility with Endothelial Cell Cultures. Polymers, 2022, 14, 2706.	2.0	7
16	Pro-Angiogenic Effects of Natural Antioxidants Extracted from Mango Leaf, Olive Leaf and Red Grape Pomace over Endothelial Colony-Forming Cells. Antioxidants, 2022, 11, 851.	2.2	5
17	Mass Transfer and Optical Properties of Active PET/PP Food-Grade Films Impregnated with Olive Leaf Extract. Polymers, 2022, 14, 84.	2.0	3
18	Evaluation of the Effect of Different Co-Solvent Mixtures on the Supercritical CO2 Extraction of the Phenolic Compounds Present in Moringa oleifera Lam. Leaves. Agronomy, 2022, 12, 1450.	1.3	3

#	Article	IF	CITATIONS
19	Structural Modification of Polymers Functionalized with Mango Leaf Extract by Supercritical Impregnation: Approaching of Further Food and Biomedical Applications. Polymers, 2022, 14, 2413.	2.0	3
20	Screening of the Supercritical Impregnation of Olea europaea Leaves Extract into Filaments of Thermoplastic Polyurethane (TPU) and Polylactic Acid (PLA) Intended for Biomedical Applications. Antioxidants, 2022, 11, 1170.	2.2	3
21	Potential Use of Annona Genus Plants Leaf Extracts to Produce Bioactive Transdermal Patches by Supercritical Solvent Impregnation. Antioxidants, 2021, 10, 1196.	2.2	2
22	EscapeWine!. Advances in Game-based Learning Book Series, 2022, , 356-375.	0.2	0