
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MWCNT synergy for boosting the electrochemical kinetics of V ₂ O ₅ cathode for lithium-ion batteries. New Journal of Chemistry, 2022, 46, 3417-3425.	1.4	4
2	Facile synthesis of zwitterionic surfactantâ€assisted molybdenum oxide/reduced graphene oxide nanocomposite with enhanced photocatalytic and antimicrobial activities. Journal of the Chinese Chemical Society, 2022, 69, 269-279.	0.8	7
3	A sensitive non-enzymatic glucose sensor based on MgO entangled nanosheets decorated with CdS nanoparticles: Experimental and DFT study. Journal of Molecular Liquids, 2022, 360, 119366.	2.3	10
4	Mesoporous NiCo ₂ S ₄ nanoflakes as an efficient and durable electrocatalyst for non-enzymatic detection of cholesterol. Nanotechnology, 2022, 33, 375502.	1.3	3
5	Frequency stable dielectric constant with reduced dielectric loss of one-dimensional ZnO–ZnS heterostructures. Nanoscale, 2021, 13, 15711-15720.	2.8	6
6	Ni and Co synergy in bimetallic nanowires for the electrochemical detection of hydrogen peroxide. Nanotechnology, 2021, 32, 205501.	1.3	12
7	Oxygen vacancies boosted vanadium doped ZnO nanostructures-based voltage-switchable binary biosensor. Nanotechnology, 2021, 33, .	1.3	2
8	Preparation of oxidized Zn–In nanostructures for electrochemical non-enzymatic cholesterol sensing. Materials Science in Semiconductor Processing, 2021, 135, 106101.	1.9	7
9	Voltage-Switchable Biosensor with Gold Nanoparticles on TiO ₂ Nanotubes Decorated with CdS Quantum Dots for the Detection of Cholesterol and H ₂ O ₂ . ACS Applied Materials & Interfaces, 2021, 13, 3653-3668.	4.0	52
10	Graphene Oxide Functionalized with Silver Nanoparticles and ZnO Synergic Nanocomposite as an Efficient Electrochemical Sensor for Diclofenac Sodium. Nano, 2021, 16, .	0.5	3
11	Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sensors and Actuators B: Chemical, 2020, 302, 127200.	4.0	70
12	Fabrication of Au/Ni/NiO heterostructure nanowires by electrochemical deposition and their temperature dependent magnetic properties. Journal of Solid State Chemistry, 2020, 284, 121186.	1.4	7
13	The role of electrodeposition current density in the synthesis and non-enzymatic glucose sensing of oxidized zinc-tin hybrid nanostructures. Materials Science in Semiconductor Processing, 2020, 109, 104953.	1.9	5
14	TiO ₂ nanotube array-modified electrodes for L-cysteine biosensing: experimental and density-functional theory study. Nanotechnology, 2020, 31, 505501.	1.3	9
15	Sensitization of Sm/SnO2\$\$ - \$\$SiO2 Nanocomposite with Zwitterionic Surfactant for Enhanced Photocatalytic Performance under Sunlight. Russian Journal of Physical Chemistry A, 2019, 93, 1610-1619.	0.1	9
16	Silver Nanoparticles Embedded Graphene Oxide Nanocomposite with Enhanced Antibacterial and Photocatalytic Degradation Activities. ChemistrySelect, 2019, 4, 8372-8377.	0.7	12
17	Morphological evolution of ZnO nanostructures with hydrothermal oxidation time and their electrochemical glucose sensing properties. Applied Nanoscience (Switzerland), 2019, 9, 2059-2068.	1.6	4
18	Synergic effect of plasmonic gold nanoparticles and graphene oxide on the performance of glucose sensing. New Journal of Chemistry, 2019, 43, 18925-18934.	1.4	4

#	Article	IF	CITATIONS
19	Tungsten oxide multifunctional nanostructures: Enhanced environmental and sensing applications. Materials Chemistry and Physics, 2019, 221, 250-257.	2.0	8
20	Temperature dependent dielectric and electric modulus properties of ZnS nano particles. Semiconductor Science and Technology, 2017, 32, 035008.	1.0	6
21	Electrical and magnetic properties of nano-sized Eu doped barium hexaferrites. Journal of Alloys and Compounds, 2017, 727, 683-690.	2.8	32
22	Ag TiO 2 nanocomposite for environmental and sensing applications. Materials Chemistry and Physics, 2016, 181, 194-203.	2.0	29
23	Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	59
24	Magnetic properties of nickel nanowires decorated with cobalt nanoparticles fabricated by two step electrochemical deposition technique. Materials Chemistry and Physics, 2016, 182, 466-471.	2.0	1
25	Fabrication and size dependent magnetic studies of NixMn1â^'xFe2O4 (xÂ=Â0.2) cubic nanoplates. Journal of Alloys and Compounds, 2016, 684, 656-662.	2.8	11
26	Fabrication and low temperature magnetic studies of Ni–Co core–shell nanowires. Journal of Alloys and Compounds, 2016, 662, 296-301.	2.8	14
27	Fabrication and temperature dependent magnetic properties of Ni–Cu–Co composite nanowires. Physica B: Condensed Matter, 2015, 475, 99-104.	1.3	10
28	Fabrication and temperature dependent magnetic properties of nickel nanowires embedded in alumina templates. Ceramics International, 2015, 41, 12081-12086.	2.3	21
29	Development of Silver Nanowires Based Highly Sensitive Amperometric Glucose Biosensor. Electroanalysis, 2015, 27, 1498-1506.	1.5	13
30	Influence of manganese substitution on structural and magnetic properties of CoFe2O4 nanoparticles. Journal of Alloys and Compounds, 2015, 639, 533-540.	2.8	67
31	Electrical transport properties of single crystal vanadium pentoxide nanowires. Materials Chemistry and Physics, 2015, 159, 19-24.	2.0	7
32	Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres. New Journal of Chemistry, 2014, 38, 1424.	1.4	52
33	Correlation between magnetic and electrical properties of Co0.6Sn0.4Fe2O4 nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	3
34	Electrical conduction mechanism in ZnS nanoparticles. Journal of Alloys and Compounds, 2014, 612, 64-68.	2.8	38
35	Enhancement of electrical conductivity and dielectric constant in Sn-doped nanocrystlline CoFe2O4. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	16
36	Temperature induced delocalization of charge carriers and metallic phase in Co0.6Sn0.4Fe2O4 nanoparticles. Journal of Applied Physics, 2012, 112, .	1.1	37

#	Article	IF	CITATIONS
37	Effect of particle size on the magnetic properties of NixCo1â^'xFe2O4 (xâ‰^0.3) nanoparticles. Chemical Physics Letters, 2012, 549, 67-71.	1.2	9
38	Effect of temperature on the magnetic characteristics of Ni0.5Co0.5Fe2O4 nanoparticles. Materials Chemistry and Physics, 2012, 133, 1006-1010.	2.0	31
39	Semiconductor to metallic transition and polaron conduction in nanostructured cobalt ferrite. Journal Physics D: Applied Physics, 2011, 44, 165404.	1.3	54
40	Reduced conductivity and enhancement of Debye orientational polarization in lanthanum doped cobalt ferrite nanoparticles. Physica B: Condensed Matter, 2011, 406, 4393-4399.	1.3	48
41	Magnetic behavior of arrays of nickel nanowires: Effect of microstructure and aspect ratio. Materials Chemistry and Physics, 2011, 130, 1103-1108.	2.0	21
42	Effect of aging on the magnetic characteristics of nickel nanowires embedded in polycarbonate. Journal of Applied Physics, 2011, 110, 013908.	1.1	3
43	Structural characterisation of textured gold nanowires. International Journal of Nanotechnology, 2011, 8, 855.	0.1	0
44	Effect of Crystallographic Texture on Magnetic Characteristics of Cobalt Nanowires. Nanoscale Research Letters, 2010, 5, 1111-1117.	3.1	59
45	Varying Track Etch Rates along the Fission Fragments' Trajectories in CR-39 Detectors. Chinese Physics Letters, 2010, 27, 052903.	1.3	2
46	Characterization of Cobalt Nanowires Fabricated in Anodic Alumina Template Through AC Electrodeposition. IEEE Nanotechnology Magazine, 2010, 9, 223-228.	1.1	23
47	Efficient field emission from structured gold nanowire cathodes. EPJ Applied Physics, 2009, 48, 30502.	0.3	19
48	Diameter dependent failure current density of gold nanowires. Journal Physics D: Applied Physics, 2009, 42, 185403.	1.3	28
49	Effect of etching conditions on pore shape in etched ion-track polycarbonate membranes. Radiation Measurements, 2009, 44, 779-782.	0.7	22
50	Structural analysis of nickel doped cobalt ferrite nanoparticles prepared by coprecipitation route. Physica B: Condensed Matter, 2009, 404, 3947-3951.	1.3	126
51	Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. Journal of Magnetism and Magnetic Materials, 2009, 321, 1838-1842.	1.0	405
52	Magnetic response of core-shell cobalt ferrite nanoparticles at low temperature. Journal of Applied Physics, 2009, 105, .	1.1	62
53	Surface Plasmon Resonances of Cu Nanowire Arrays. Journal of Physical Chemistry C, 2009, 113, 13583-13587.	1.5	61
54	Investigation of size effects in the electrical resistivity of single electrochemically fabricated gold nanowires. Physica F: Low-Dimensional Systems and Nanostructures, 2008, 40, 3173-3178	1.3	37

#	Article	lF	CITATIONS
55	Oscillations of electrical conductivity in single bismuth nanowires. Physical Review B, 2008, 77, .	1.1	29
56	Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection. Physical Review Letters, 2008, 101, 157403.	2.9	634
57	Field emission properties of electrochemically deposited gold nanowires. Applied Physics Letters, 2008, 92, 063115.	1.5	38
58	Burnout current density of bismuth nanowires. Journal of Applied Physics, 2008, 103, 103713.	1.1	13
59	Tuning the Characteristics of Electrochemically Fabricated Gold Nanowires. Journal of Nanoscience and Nanotechnology, 2008, 8, 5659-5666.	0.9	12
60	Influence of crystallinity on the Rayleigh instability of gold nanowires. Journal Physics D: Applied Physics, 2007, 40, 3767-3770.	1.3	68
61	Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology, 2007, 18, 135709.	1.3	55
62	Field emission properties of gold nanowire cathodes based on polymer ion-track membranes. , 2007, , .		0
63	Investigation of nanopore evolution in ion track-etched polycarbonate membranes. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 553-557.	0.6	60
64	Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology, 2006, 17, 5954-5959.	1.3	240
65	Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: the influence of deposition parameters. Nanotechnology, 2006, 17, 1922-1926.	1.3	115
66	Resonances of individual metal nanowires in the infrared. Applied Physics Letters, 2006, 89, 253104.	1.5	176
67	Synthesis of gold nanowires with controlled crystallographic characteristics. Applied Physics A: Materials Science and Processing, 2006, 84, 403-407.	1.1	95
68	Finite-size effects in the electrical transport properties of single bismuth nanowires. Journal of Applied Physics, 2006, 100, 114307.	1.1	76
69	Quantum size effects manifest in infrared spectra of single bismuth nanowires. Applied Physics Letters, 2006, 88, 103114.	1.5	46
70	Study of the etching characteristics of -mixed NaOH solution. Radiation Measurements, 2005, 40, 299-302.	0.7	7
71	Determination of porosity of different materials by radon diffusion. Radiation Measurements, 2005, 40, 106-109.	0.7	27
72	A quick method for maintaining the molarity of NaOH solution during continuous etching of CR-39. Radiation Measurements, 2002, 35, 41-45.	0.7	11

#	Article	IF	CITATIONS
73	Swelling in CR-39 and its effect on bulk etch-rate. Radiation Measurements, 2002, 35, 301-305.	0.7	22
74	Heavy ion interactions of () Pb with U. Radiation Measurements, 2001, 34, 227-230.	0.7	5
75	Fabrication and Magnetoresistance of Single Au-Ni-AuNanowire. International Journal of Nano Studies & Technology, 0, , 45-49.	0.0	Ο
76	Synthesis of Cox Ni1-XFe2 o4 (X = 0.0, 0.5, 1.0) Nanoparticles by Chemical Co-Precipitation Route. International Journal of Nano Studies & Technology, 0, , 55-58.	0.0	0