Martin Blumenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7081210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geochemical indications for the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM-2) hyperthermals in terrestrial sediments of the Canadian Arctic. , 2022, 18, 327-349.		5

Biomarker insights into a methane-enriched Holocene peat-setting from $\hat{a} \in \mathbb{C}$ Doggerland $\hat{a} \in \mathbb{C}$ (central North) Tj ETQq0.0 0 rgBT₂/Overlock

3	Oil and gas seepage offshore Georgia (Black Sea) – Geochemical evidences for a paleogene-neogene hydrocarbon source rock. Marine and Petroleum Geology, 2021, 128, 104995.	3.3	8
4	On the climate benefit of a coal-to-gas shift in Germany's electric power sector. Scientific Reports, 2021, 11, 11453.	3.3	28
5	Basin and petroleum systems modelling in the northern Norwegian Barents Sea. Marine and Petroleum Geology, 2021, 130, 105128.	3.3	13
6	Using highâ€resolution XRF analyses as a sequence stratigraphic tool in a mudstoneâ€dominated succession (Early Cretaceous, Lower Saxony Basin, Northern Germany). Depositional Record, 2020, 6, 236-258.	1.7	11
7	Understanding the geobiology of the terminal Ediacaran Khatyspyt Lagerstäte (Arctic Siberia, Russia). Geobiology, 2020, 18, 643-662.	2.4	12
8	Geochemical implications from direct Rock-Eval pyrolysis of petroleum. Organic Geochemistry, 2020, 146, 104051.	1.8	19
9	Structure, kinematics and composition of fluid-controlled brittle faults and veins in Lower Cretaceous claystones (Lower Saxony Basin, Northern Germany): Constraints from petrographic studies, microfabrics, stable isotopes and biomarker analyses. Chemical Geology, 2020, 540, 119501.	3.3	5
10	Palynofacies, micropalaeontology, and source rock evaluation of non-marine Jurassic–Cretaceous boundary deposits from northern Germany - Implications for palaeoenvironment and hydrocarbon potential. Marine and Petroleum Geology, 2019, 103, 526-548.	3.3	10
11	Biomarker paleo-reconstruction of the German Wealden (Berriasian, Early Cretaceous) in the Lower Saxony Basin (LSB). International Journal of Earth Sciences, 2019, 108, 229-244.	1.8	14
12	Origin of near-surface hydrocarbon gases bound in northern Barents Sea sediments. Marine and Petroleum Geology, 2019, 102, 455-476.	3.3	16
13	The taphonomic fate of isorenieratene in Lower Jurassic shales—controlled by iron?. Geobiology, 2018, 16, 237-251.	2.4	7
14	Geochemistry of a middle Devonian cannel coal (Munindalen) in comparison with Carboniferous coals from Svalbard. Arktos, 2018, 4, 1-8.	1.0	9
15	Zechstein Main Dolomite oil characteristics in the Southern Permian Basin: I. Polish and German sectors. Marine and Petroleum Geology, 2018, 93, 356-375.	3.3	16
16	Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?. Geo-Marine Letters, 2018, 38, 121-129.	1.1	9
17	Spatial distribution and temporal variation of methane, ethane and propane background levels in shallow aquifers – A case study from Lower Saxony (Germany). Journal of Hydrology: Regional Studies, 2018, 19, 57-79.	2.4	9
18	Photic zone euxinia in the central Rhaetian Sea prior the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461, 55-64.	2.3	15

#	Article	IF	CITATIONS
19	Hydrocarbons from near-surface sediments of the Barents Sea north of Svalbard – Indication of subsurface hydrocarbon generation?. Marine and Petroleum Geology, 2016, 76, 432-443.	3.3	17
20	Solid bitumen, bituminite and thermal maturity of the Upper Jurassic-Lower Cretaceous Chia Gara Formation, Kirkuk Oil Field, Zagros Fold Belt, Kurdistan, Iraq. International Journal of Coal Geology, 2016, 165, 28-48.	5.0	30
21	Reconnaissance study of organic geochemistry and petrology of Paleozoic-Cenozoic potential hydrocarbon source rocks from the New Siberian Islands, Arctic Russia. Marine and Petroleum Geology, 2016, 78, 30-47.	3.3	4
22	Total shale oil inventory from an extended Rock-Eval approach on non-extracted and extracted source rocks from Germany. International Journal of Coal Geology, 2016, 163, 186-194.	5.0	29
23	Distribution and origin of dissolved methane, ethane and propane in shallow groundwater of Lower Saxony, Germany. Applied Geochemistry, 2016, 67, 118-132.	3.0	26
24	C ₃₅ Hopanoid Side Chain Biosynthesis: Reduction of Ribosylhopane into Bacteriohopanetetrol by a Cellâ€Free System Derived from <i>Methylobacterium organophilum</i> . ChemBioChem, 2015, 16, 1764-1770.	2.6	12
25	Organic matter preservation in the carbonate matrix of a recent microbial mat – Is there a â€~mat seal effect'?. Organic Geochemistry, 2015, 87, 25-34.	1.8	28
26	Methane-derived carbonate conduits from the late Aptian of Salinac (Marne Bleues, Vocontian Basin,) Tj ETQq0 () 0 ₃ rgBT /C	overlock 10 T
27	Lipid biomarkers and their specific carbon isotopic compositions ofÂcold seep carbonates from the South China Sea. Marine and Petroleum Geology, 2015, 66, 501-510.	3.3	20
28	Authigenic carbonate formation and its impact on the biomarker inventory at hydrocarbon seeps – A case study from the Holocene Black Sea and the Plio-Pleistocene Northern Apennines (Italy). Marine and Petroleum Geology, 2015, 66, 532-541.	3.3	28
29	Organic matter type, origin and thermal maturity of Paleozoic, Mesozoic and Cenozoic successions of the New Siberian Islands, eastern Russian Arctic. International Journal of Coal Geology, 2015, 152, 125-146.	5.0	12
30	Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea). Biogeosciences, 2014, 11, 7009-7023.	3.3	18
31	The isotopic biosignatures of photo―vs. thiotrophic bivalves: are they preserved in fossil shells?. Geobiology, 2014, 12, 406-423.	2.4	18
32	Seasonal and spatial methane dynamics in the water column of the central Baltic Sea (Gotland Sea). Continental Shelf Research, 2014, 91, 12-25.	1.8	32

 $_{33}$ Geobiology of a palaeoecosystem with Ediacara-type fossils: The Shibantan Member (Dengying) Tj ETQq1 1 0.784314 rgBT /Qverlock $_{2.7}^{10}$

Occurrence and fate of fatty acyl biomarkers in an ancient whale bone (Oligocene, El Cien Formation,) Tj ETQq0 0 Q rgBT /Overlock 10 T

35	Test of microwave, ultrasound and Bligh & Dyer extraction for quantitative extraction of bacteriohopanepolyols (BHPs) from marine sediments. Organic Geochemistry, 2014, 68, 90-94.	1.8	9
36	Methanogenic capabilities of <scp>ANME</scp> â€archaea deduced from <scp><scp>¹³C</scp><â€abelling approaches. Environmental Microbiology, 2013, 15, 2384-2393.</scp>	3.8	61

#	Article	IF	CITATIONS
37	Outcrop analogues of pockmarks and associated methane-seep carbonates: A case study from the Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 390, 94-115.	2.3	59

Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic) Tj ETQq0 0 0 rgBT $_{1.8}^{10}$ Overlock 10 Tf 50

39	Bacteriohopanepolyols in a stratified cyanobacterial mat from Kiritimati (Christmas Island, Kiribati). Organic Geochemistry, 2013, 55, 55-62.	1.8	14
40	Spectral characterization of ten cyclic lipids using timeâ€ofâ€flight secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 565-581.	1.5	33
41	Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosciences, 2013, 10, 2725-2735.	3.3	37
42	Biomarkers Reveal Diverse Microbial Communities in Black Smoker Sulfides from Turtle Pits (Mid-Atlantic Ridge, Recent) and Yaman Kasy (Russia, Silurian). Geomicrobiology Journal, 2012, 29, 66-75.	2.0	17
43	Gas hydrate decomposition recorded by authigenic barite at pockmark sites of the northern Congo Fan. Geo-Marine Letters, 2012, 32, 515-524.	1.1	25
44	Novel findings on hopanoid occurrences among sulfate reducing bacteria: Is there a direct link to nitrogen fixation?. Organic Geochemistry, 2012, 49, 1-5.	1.8	39
45	Biomarkers of black shales formed by microbial mats, Late Mesoproterozoic (1.1Ga) Taoudeni Basin, Mauritania. Precambrian Research, 2012, 196-197, 113-127.	2.7	113
46	Diagenetic barium cycling in Black Sea sediments – A case study for anoxic marine environments. Geochimica Et Cosmochimica Acta, 2012, 88, 88-105.	3.9	67
47	Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea). Biogeosciences, 2012, 9, 4969-4977.	3.3	29
48	Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany). Biogeosciences, 2012, 9, 4139-4153.	3.3	36
49	The fingerprint of chemosymbiosis: origin and preservation of isotopic biosignatures in the nonseep bivalve Loripes lacteus compared with Venerupis aurea. FEMS Microbiology Ecology, 2012, 81, 480-493.	2.7	16
50	Soil microbial community changes as a result of long-term exposure to a natural CO2 vent. Geochimica Et Cosmochimica Acta, 2010, 74, 2697-2716.	3.9	156
51	Decoupling of bio- and geohopanoids in sediments of the Benguela Upwelling System (BUS). Organic Geochemistry, 2010, 41, 1119-1129.	1.8	53
52	Hopanoid production by <i>Desulfovibrio bastinii</i> isolated from oilfield formation water. FEMS Microbiology Letters, 2009, 293, 73-78.	1.8	34
53	Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea. Geochimica Et Cosmochimica Acta, 2009, 73, 750-766.	3.9	38
54	A novel, multiâ€layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Environmental Microbiology, 2008, 10, 1934-1947.	3.8	55

MARTIN BLUMENBERG

#	Article	IF	CITATIONS
55	Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biology and Biochemistry, 2008, 40, 3004-3013.	8.8	64
56	Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column. Organic Geochemistry, 2007, 38, 84-91.	1.8	71
57	Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature, 2007, 449, 898-901.	27.8	349
58	Biosignatures present in a hydrothermal massive sulfide from the Mid-Atlantic Ridge. Geobiology, 2007, 5, 435-450.	2.4	34
59	High occurrences of brominated lipid fatty acids in boreal sponges of the order Halichondrida. Marine Biology, 2007, 150, 1153-1160.	1.5	11
60	Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro. Organic Geochemistry, 2006, 37, 1411-1419.	1.8	40
61	Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environmental Microbiology, 2006, 8, 1220-1227.	3.8	158
62	Subsurface Microbial Methanotrophic Mats in the Black Sea. Applied and Environmental Microbiology, 2005, 71, 6375-6378.	3.1	87
63	In Vitro Study of Lipid Biosynthesis in an Anaerobically Methane-Oxidizing Microbial Mat. Applied and Environmental Microbiology, 2005, 71, 4345-4351.	3.1	66
64	Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 31-47.	2.3	51
65	Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 18-30.	2.3	155
66	Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11111-11116.	7.1	331
67	Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 2003, 34, 81-87.	1.8	114
68	Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 2002, 297, 1013-1015.	12.6	673
69	A chemical view of the most ancient metazoa – biomarker chemotaxonomy of hexactinellid sponges. Die Naturwissenschaften, 2002, 89, 60-66.	1.6	68
70	The steroids of hexactinellid sponges. Die Naturwissenschaften, 2002, 89, 415-419.	1.6	19