Yong Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/708115/publications.pdf Version: 2024-02-01

YONG HAN

#	Article	IF	CITATIONS
1	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	27.8	1,365
2	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	5.3	130
3	Genome-Wide Association Study of Salinity Tolerance During Germination in Barley (Hordeum vulgare) Tj ETQq1	1 0.7843	14 rgBT /Ove
4	Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry, 2013, 141, 2743-2750.	8.2	66
5	A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. Plant and Cell Physiology, 2018, 59, 1976-1989.	3.1	66
6	The HKT Transporter HvHKT1;5 Negatively Regulates Salt Tolerance. Plant Physiology, 2020, 182, 584-596.	4.8	57
7	Identification of proteins associated with ion homeostasis and salt tolerance in barley. Proteomics, 2014, 14, 1381-1392.	2.2	50
8	Identification of the proteins associated with low potassium tolerance in cultivated and Tibetan wild barley. Journal of Proteomics, 2015, 126, 1-11.	2.4	44
9	Highly efficient and genotype-independent barley gene editing based on anther culture. Plant Communications, 2021, 2, 100082.	7.7	40
10	Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regulation, 2015, 76, 13-23.	3.4	32
11	The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiologiae Plantarum, 2014, 36, 1261-1269.	2.1	30
12	Salinity tolerance in barley during germination—homologs and potential genes. Journal of Zhejiang University: Science B, 2020, 21, 93-121.	2.8	30
13	CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for <i>HvARE1</i> in improvement of nitrogen use efficiency in barley. Journal of Integrative Plant Biology, 2022, 64, 756-770.	8.5	27
14	Genome-Wide Association Study and Identification of Candidate Genes for Nitrogen Use Efficiency in Barley (Hordeum vulgare L.). Frontiers in Plant Science, 2020, 11, 571912.	3.6	23
15	Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.). Journal of Zhejiang University: Science B, 2011, 12, 399-407.	2.8	20
16	Genetic variants of HvGlb1 in Tibetan annual wild barley and cultivated barley and their correlation with malt quality. Journal of Cereal Science, 2011, 53, 59-64.	3.7	18
17	Advances in Understanding the Molecular Mechanisms and Potential Genetic Improvement for Nitrogen Use Efficiency in Barley. Agronomy, 2020, 10, 662.	3.0	16
18	The differences in physiological responses, ultrastructure changes, and Na+ subcellular distribution under salt stress among the barley genotypes differing in salt tolerance. Acta Physiologiae Plantarum, 2014, 36, 2397-2407.	2.1	13

Yong Han

#	Article	IF	CITATIONS
19	Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy, 2021, 11, 103.	3.0	13
20	Genetic architecture of limit dextrinase inhibitor (LDI) activity in Tibetan wild barley. BMC Plant Biology, 2014, 14, 117.	3.6	12
21	Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	9
22	NHX-Type Na+/H+ Antiporter Gene Expression Under Different Salt Levels and Allelic Diversity of HvNHX in Wild and Cultivated Barleys. Frontiers in Genetics, 2021, 12, 809988.	2.3	8
23	Overexpression of HvCBF7 and HvCBF9 changes salt and drought tolerance in Arabidopsis. Plant Growth Regulation, 2018, 85, 281-292.	3.4	6
24	Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. Molecular Breeding, 2021, 41, 1.	2.1	4
25	Strategies to breed sterile leucaena for Western Australia. Tropical Grasslands - Forrajes Tropicales, 2019, 7, 80-86.	0.5	2
26	Swiftly Evolving CRISPR Genome Editing: A Revolution in Genetic Engineering for Developing Stress-Resilient Crops. Current Chinese Science, 2022, 2, 382-399.	0.5	2
27	Fine-mapping and characterisation of genes on barley (Hordeum vulgare) chromosome 2H for salinity stress tolerance during germination. Crop Journal, 2021, , .	5.2	2
28	Biosafety of RNA silencing and genome editing technologies in crop plants: Malaysian and Australian research perspectives. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 64-69.	0.1	1