
Chao Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable photoluminescence in Sb ³⁺ -doped zero-dimensional hybrid metal halides with intrinsic and extrinsic self-trapped excitons. Journal of Materials Chemistry C, 2020, 8, 5058-5063.	5.5	48
2	Synthesis and luminescence properties of double-perovskite white emitting phosphor Ca3WO6:Dy3+. Journal of Materials Science: Materials in Electronics, 2016, 27, 8370-8377.	2.2	33
3	Tunable luminescence and energy transfer of a Eu ²⁺ /Mn ²⁺ co-doped Sr ₃ NaY(PO ₄) ₃ F phosphor for white LEDs. RSC Advances, 2016, 6, 87493-87501.	3.6	32
4	A novel near-infrared LiGaW ₂ O ₈ :Yb ³⁺ , Cr ³⁺ up-conversion phosphor with enhanced luminescence intensity based on Ho ³⁺ /Er ³⁺ bridges. Journal of Materials Chemistry C, 2020, 8, 12189-12195.	5.5	32
5	Self-trapped exciton to dopant energy transfer in Sb ³⁺ -doped Cs ₂ ZrCl ₆ perovskite variants. Materials Chemistry Frontiers, 2021, 5, 6133-6138.	5.9	27
6	Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer. Journal of Materials Science: Materials in Electronics, 2014, 25, 140-145.	2.2	24
7	Charge transport and extraction of PTB7:PC ₇₁ BM organic solar cells: effect of film thickness and thermal-annealing. RSC Advances, 2019, 9, 24895-24903.	3.6	23
8	Alloying Cs ⁺ into Rb ₂ ZrCl ₆ :Te ⁴⁺ toward highly efficient and stable perovskite variants. Materials Chemistry Frontiers, 2021, 5, 4997-5003.	5.9	21
9	Synthesis and luminescence properties of Sr3GdNa(PO4)3F: Sm3+ phosphor. Journal of Materials Science, 2015, 50, 2257-2262.	3.7	18
10	Luminescence and energy transfer of Tm ³⁺ and Dy ³⁺ co-doped Na ₃ ScSi ₂ O ₇ phosphors. RSC Advances, 2019, 9, 27817-27824.	3.6	17
11	Synthesis and luminescence properties of Eu3+-doped a novel double perovskite Sr2YTaO6 phosphor. Journal of Materials Science: Materials in Electronics, 2019, 30, 2864-2871.	2.2	17
12	A novel orange-red emitting phosphor Sr3Lu(PO4)3:Sm3+ for near UV-pumped white light-emitting diodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 8136-8143.	2.2	14
13	Synthesis and Photoluminescence Properties of Eu3+-Activated Double Perovskite Ba2YTaO6 Red Phosphor. Journal of Electronic Materials, 2019, 48, 5048-5054.	2.2	13
14	Synthesis and photoluminescence properties of a novel white-light-emitting Dy3+-activated Sr3Sc(PO4)3 phosphor. Journal of Materials Science: Materials in Electronics, 2018, 29, 573-581.	2.2	11
15	A novel orange–red emitting phosphor Sr2LuTaO6:Sm3+ for WLEDs. Journal of Materials Science: Materials in Electronics, 2019, 30, 9303-9310.	2.2	11
16	Efficient polymer solar cells with polyethylene glycol cathode buffer layer and improved PEDOT:PSS conductivity. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1800-1804.	1.8	9
17	Charge Transport and Extraction of Bilayer Interdiffusion Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2019, 123, 24446-24452.	3.1	9
18	Insight into the synthesis and luminescence properties of the single-ion-activated single-phased Na3ScSi2O7:Dy3+ phosphor for white light-emitting diodes. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9

CHAO WEI

#	Article	IF	CITATIONS
19	Luminescence properties and energy transfer of co-doped Ba3GdNa(PO4)3F:Ce3+,Tb3+ green-emitting phosphors. Journal of Materials Science: Materials in Electronics, 2018, 29, 7203-7212.	2.2	8
20	Electricâ€Induced Degradation of Cathode Interface Layer in PM7:ITâ€4F Polymer Solar Cells. Solar Rrl, 2021, 5, 2100151.	5.8	8
21	Crystal Structure and Luminescence Properties of Dy3+-Doped Double-Perovskite Tellurites. Journal of Electronic Materials, 2022, 51, 331-338.	2.2	7
22	Research of optical absorption and luminescence spectra of double-perovskite calcium tungstate co-doped with Yb3+/Ho3+. Journal of Materials Science: Materials in Electronics, 2018, 29, 1146-1152.	2.2	6
23	Synthesis and luminescence properties of orange–red phosphor Ba2ScNbO6:Sm3+. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	6
24	Up-conversion luminescence and optical temperature sensing properties of Ho3+-doped double-tungstate LiYb(WO4)2 phosphors. Journal of Materials Science: Materials in Electronics, 2021, 32, 17990-18001.	2.2	6
25	Efficient energy transfer and luminescence properties of green–blue emission in Ce/Tb Co-doped Sr3NaY(PO4)3F phosphors. Journal of Materials Science: Materials in Electronics, 2018, 29, 13302-13309.	2.2	5
26	Synthesis and luminescence properties of novel SrScLiTeO6:Ln (Ln = Eu3+, Sm3+) phosphors for white LED applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	5
27	Thermometry and up-conversion luminescence of Ln3+ (Ln = Er, Ho, Tm)-doped double molybdate LiYbMo2O8. Journal of Materials Science: Materials in Electronics, 2020, 31, 18370-18380.	2.2	5
28	Tunability of green–red up-conversion emission of co-doped Ca3WO6:Yb3+/Er3+ powders. Journal of Materials Science: Materials in Electronics, 2017, 28, 16540-16546.	2.2	4
29	Crystal structure and luminescence property of a single-phase white light emission phosphor Sr3YNa(PO4)3F:Dy3+. Journal of Materials Science: Materials in Electronics, 2018, 29, 12632-12638.	2.2	4
30	Novel orange–red emitting phosphor Ba2ScNbO6:Eu3+ for WLEDs: synthesis and luminescence properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 15512-15520.	2.2	4
31	Tunable luminescence properties of Ba2ScTaO6:Bi3+, Eu3+ phosphors. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	4
32	Binary Additive–Induced Performance Improvement of PM7:PC ₇₁ BM Organic Solar Cells with High Open ircuit Voltage and Enhanced Current Intensity. Energy Technology, 2021, 9, 2000710.	3.8	0