
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080974/publications.pdf Version: 2024-02-01

LIWEI SU

#	Article	IF	CITATIONS
1	Engineering Bamboo Leaves Into 3D Macroporous Si@C Composites for Stable Lithium-Ion Battery Anodes. Frontiers in Chemistry, 2022, 10, 882681.	1.8	2
2	Low-carbon CeOx/Ru@RuO2 nanosheets as bifunctional catalysts for lithium-oxygen batteries. Journal of Alloys and Compounds, 2022, 924, 166354.	2.8	4
3	N-doped carbon nanolayer modified nickel foam: A novel substrate for supercapacitors. Applied Surface Science, 2021, 546, 148754.	3.1	7
4	Core–Shell CoSn@CoSnO _{<i>x</i>} Nanoparticles Encapsulated in Hollow Carbon Nanocubes as Anodes for Lithiumâ€lon Batteries. Energy Technology, 2021, 9, 2100153.	1.8	12
5	Porous Carbon Nanosheets Armoring 3D Current Collectors toward Ultrahigh Mass Loading for High-Energy-Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 52519-52529.	4.0	6
6	Hierarchical porous carbon material regenerated from natural bamboo-leaf: How to improve the performance of lead-carbon batteries?. Journal of Power Sources, 2021, 516, 230664.	4.0	9
7	Sub-10 nm SnO2/Fe3O4/graphene nanosheets: Nanocatalysis to improve initial coulombic efficiency for lithium storage. Journal of Alloys and Compounds, 2020, 816, 152624.	2.8	8
8	Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. Journal of Power Sources, 2020, 449, 227513.	4.0	68
9	Enlarging Surface/Bulk Ratios of NiO Nanoparticles toward High Utilization and Rate Capability for Supercapacitors. Particle and Particle Systems Characterization, 2020, 37, 1900344.	1.2	7
10	Poplar flower-like nitrogen-doped carbon nanotube@VS ₄ composites with excellent sodium storage performance. Inorganic Chemistry Frontiers, 2020, 7, 4883-4891.	3.0	21
11	Subâ€10Ânm V ₂ O ₅ Crystals on Carbon Nanosheets for Advanced Allâ€5olidâ€5tate Lithium Metal Batteries. Particle and Particle Systems Characterization, 2020, 37, 2000164.	1.2	4
12	Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium–oxygen batteries. Nano Energy, 2020, 71, 104570.	8.2	28
13	Uniform Mesoporous CoCO 3 Nanospindles on Graphite Nanosheets for Highly Efficient Lithium Storage. Particle and Particle Systems Characterization, 2020, 37, 2000113.	1.2	3
14	Three-dimensional VS4 consisting of uniform nanosheets as excellent anode material for sodium ion batteries. Journal of Alloys and Compounds, 2020, 834, 155204.	2.8	22
15	EDTA-2Na assisted dynamic hydrothermal synthesis of orthorhombic LiMnO2 for lithium ion battery. Journal of Alloys and Compounds, 2020, 830, 154599.	2.8	10
16	Three-dimensional porous copper framework supported group IVA element materials as sodium-ion battery anode materials. Journal of Alloys and Compounds, 2019, 771, 169-175.	2.8	14
17	Synthesis of Co Ni1-S2 electrode material with a greatly enhanced electrochemical performance for supercapacitors by in-situ solid-state transformation. Journal of Alloys and Compounds, 2019, 803, 950-957.	2.8	18
18	Ultrathin Ni _{1â^'} <i>_x</i> Co <i>_x</i> S ₂ nanoflakes as high energy density electrode materials for asymmetric supercapacitors. Beilstein Journal of Nanotechnology, 2019, 10, 2207-2216.	1.5	7

#	Article	IF	CITATIONS
19	Facile Synthesis of Amorphous Ge Supported by Ni Nanopyramid Arrays as an Anode Material for Sodiumâ€lon Batteries. ChemistryOpen, 2019, 8, 298-303.	0.9	19
20	Size-dependent capacitive behavior of homogeneous MnO nanoparticles on carbon cloth as electrodes for symmetric solid-state supercapacitors with high performance. Electrochimica Acta, 2019, 307, 442-450.	2.6	20
21	One-pot fabricating rambutan-like nitrogen-simultaneously-doped TiO2@carbon@TiO2 double shell composites with superior sodium storage for Na-ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 6395-6402.	1.1	5
22	Facile One-Step Dynamic Hydrothermal Synthesis of Spinel LiMn2O4/Carbon Nanotubes Composite as Cathode Material for Lithium-Ion Batteries. Materials, 2019, 12, 4123.	1.3	5
23	Cu ₂ S@ N, S Dualâ€Doped Carbon Matrix Hybrid as Superior Anode Materials for Lithium/Sodium ion Batteries. ChemElectroChem, 2018, 5, 2135-2141.	1.7	49
24	Co2SiO4/SiO2/RGO nanosheets: Boosting the lithium storage capability of tetravalent Si by using highly-dispersed Co element. Electrochimica Acta, 2018, 282, 609-617.	2.6	41
25	Ultrathin Layered Hydroxide Cobalt Acetate Nanoplates Faceâ€ŧoâ€Face Anchored to Graphene Nanosheets for Highâ€Efficiency Lithium Storage. Advanced Functional Materials, 2017, 27, 1605544.	7.8	103
26	Sea urchin-like CoO/Co/N-doped carbon matrix hybrid composites with superior high-rate performance for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 701, 524-532.	2.8	28
27	Sugarapple-like N-doped TiO 2 @carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. Journal of Power Sources, 2017, 353, 237-244.	4.0	89
28	Uniform core–shell Cu ₆ Sn ₅ @C nanospheres with controllable synthesis and excellent lithium storage performances. RSC Advances, 2017, 7, 28399-28406.	1.7	15
29	Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. Journal of Power Sources, 2017, 342, 529-536.	4.0	200
30	CoO@Nâ€Doped Carbon Composite Nanotubes as Excellent Anodes for Lithiumâ€lon Batteries. ChemElectroChem, 2017, 4, 2862-2869.	1.7	21
31	Ultrahigh Reversibility of SnO ₂ in SnO ₂ @C Quantum Dots/Graphene Oxide Nanosheets for Lithium Storage. ChemistrySelect, 2017, 2, 11853-11859.	0.7	7
32	Excellent Lithium Storage Materials Consisting of Highly Distributed Fe3O4Quantum Dots on Commercially Available Graphite Nanoplates. Particle and Particle Systems Characterization, 2016, 33, 597-601.	1.2	13
33	Multi-yolk–shell SnO ₂ /Co ₃ Sn ₂ @C Nanocubes with High Initial Coulombic Efficiency and Oxygen Reutilization for Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 35172-35179.	4.0	50
34	Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. Journal of Power Sources, 2016, 326, 313-321.	4.0	31
35	Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries. Electrochimica Acta, 2016, 194, 219-227.	2.6	69
36	Effect of pore lengths on the reduction degree and lithium storage performance of Mesoporous SiOx nanomaterials. Journal of Alloys and Compounds, 2016, 663, 524-530.	2.8	18

#	Article	IF	CITATIONS
37	Highlyâ€Dispersed Niâ€QDs/Mesoporous Carbon Nanoplates: A Universal and Commercially Applicable Approach Based on Corn Straw Piths and High Capacitive Performances. ChemElectroChem, 2015, 2, 1897-1902.	1.7	17
38	Mesoporous Mn ₃ O ₄ Nanobeads/Graphene Hybrids: Facile Gel-Like Film Synthesis, Rational Structure Design, and Excellent Performance for Lithium Storage. Particle and Particle Systems Characterization, 2015, 32, 721-727.	1.2	39
39	EG-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO ₄ Nanoplates as Cathodes in Lithium Ion Batteries. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1
40	Preparation and lithium storage performance of yolk–shell Si@void@C nanocomposites. Physical Chemistry Chemical Physics, 2015, 17, 17562-17565.	1.3	51
41	MnO QD/Graphene Dot Fabrics: A Versatile Nanohybrid Material. ChemElectroChem, 2015, 2, 789-794.	1.7	25
42	Rational Design of Ni Nanoparticles on Nâ€Rich Ultrathin Carbon Nanosheets for Highâ€Performance Supercapacitor Materials: Embedded―Versus Anchoredâ€Type Dispersion. Chemistry - A European Journal, 2014, 20, 5046-5053.	1.7	37
43	A composite of Co nanoparticles highly dispersed on N-rich carbon substrates: an efficient electrocatalyst for Li–O ₂ battery cathodes. Chemical Communications, 2014, 50, 776-778.	2.2	87
44	Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. Journal of Power Sources, 2014, 264, 108-113.	4.0	153
45	Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12519.	5.2	92
46	Micro/nano-complex-structure SiOx–PANI–Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3776.	5.2	53
47	Do Transition Metal Carbonates Have Greater Lithium Storage Capability Than Oxides? A Case Study of Monodisperse CoCO3 and CoO Microspindles. ACS Applied Materials & Interfaces, 2014, 6, 12346-12352.	4.0	83
48	Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries. Journal of Alloys and Compounds, 2014, 585, 434-441.	2.8	22
49	Well-distributed TiO2 nanocrystals on reduced graphene oxides as high-performance anode materials for lithium ion batteries. RSC Advances, 2013, 3, 13696.	1.7	44
50	Rambutan-Like FeCO ₃ Hollow Microspheres: Facile Preparation and Superior Lithium Storage Performances. ACS Applied Materials & Interfaces, 2013, 5, 11212-11217.	4.0	121
51	Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: a case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres. Journal of Materials Chemistry A, 2013, 1, 15158.	5.2	230
52	Preparation and electrochemical Li storage performance of MnO@C nanorods consisting of ultra small MnO nanocrystals. RSC Advances, 2013, 3, 9035.	1.7	47
53	Core–shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries. Electrochimica Acta, 2013, 87, 180-185.	2.6	124
54	CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy, 2013, 2, 276-282.	8.2	263

#	Article	IF	CITATIONS
55	Preparation and Ni-Doping Effect of Nanosized Truncated Octahedral LiCoMnO ₄ As Cathode Materials for 5 V Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 12185-12189.	4.0	35
56	Mesoporous slit-structured NiO for high-performance pseudocapacitors. Physical Chemistry Chemical Physics, 2012, 14, 11048.	1.3	55
57	Ni/C Hierarchical Nanostructures with Ni Nanoparticles Highly Dispersed in N-Containing Carbon Nanosheets: Origin of Li Storage Capacity. Journal of Physical Chemistry C, 2012, 116, 23974-23980.	1.5	199
58	Chrysanthemum-like Co3O4 architectures: Hydrothermal synthesis and lithium storage performances. Solid State Sciences, 2012, 14, 451-455.	1.5	35
59	Preparation and Lithium Storage Performances of Mesoporous Fe ₃ O ₄ @C Microcapsules. ACS Applied Materials & Interfaces, 2011, 3, 705-709.	4.0	199
60	Li ion battery materials with core–shell nanostructures. Nanoscale, 2011, 3, 3967.	2.8	473
61	Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chemical Communications, 2010, 46, 2590.	2.2	232
62	LiVOPO4: A cathode material for 4V lithium ion batteries. Journal of Power Sources, 2009, 189, 786-789.	4.0	78
63	Influence of DC conductivity of PPy anode on Li/PPy secondary batteries. Journal of Applied Polymer Science, 2008, 109, 3458-3460.	1.3	8