Yow Keat Tham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080422/publications.pdf

Version: 2024-02-01

777949 1113639 1,514 16 13 15 citations h-index g-index papers 16 16 16 2960 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Novel Lipid Species for Detecting and Predicting Atrial Fibrillation in Patients With Type 2 Diabetes. Diabetes, 2021, 70, 255-261.	0.3	9
2	FoxO1 is required for physiological cardiac hypertrophy induced by exercise but not by constitutively active PI3K. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1470-H1485.	1.5	15
3	Gene delivery of medium chain acyl-coenzyme A dehydrogenase induces physiological cardiac hypertrophy and protects against pathological remodelling. Clinical Science, 2018, 132, 381-397.	1.8	17
4	Distinct lipidomic profiles in models of physiological and pathological cardiac remodeling, and potential therapeutic strategies. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 219-234.	1.2	21
5	Forkhead box protein O1 (FoxO1) is required for exercise-induced, but not PI3K-induced, physiological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2018, 124, 93.	0.9	1
6	Lipidomic Profiles of the Heart and Circulation in Response to Exercise versus Cardiac Pathology: A Resource of Potential Biomarkers and Drug Targets. Cell Reports, 2018, 24, 2757-2772.	2.9	55
7	Sex differences in response to miRNAâ€34a therapy in mouse models of cardiac disease: identification of sexâ€, disease†and treatment†regulated miRNAs. Journal of Physiology, 2016, 594, 5959-5974.	1.3	40
8	Inhibition of miR-154 Protects Against Cardiac Dysfunction and Fibrosis in a Mouse Model of Pressure Overload. Scientific Reports, 2016, 6, 22442.	1.6	43
9	Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Archives of Toxicology, 2015, 89, 1401-1438.	1.9	492
10	Therapeutic silencing of miRâ€652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB Journal, 2014, 28, 5097-5110.	0.2	74
11	The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nature Communications, 2014, 5, 5705.	5 . 8	86
12	O166 Inhibition of miRNA-652 Using LNA-antimiRs Improves Cardiac Function in a Mouse Model of Pressure Overload and is Associated with Preserved Angiogenesis and Upregulation of Jagged 1., 2014, 9, e47.		0
13	Silencing of miR-34a Attenuates Cardiac Dysfunction in a Setting of Moderate, but Not Severe, Hypertrophic Cardiomyopathy. PLoS ONE, 2014, 9, e90337.	1.1	67
14	Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17615-17620.	3.3	391
15	Phosphoinositide 3-Kinase p $110\hat{l}\pm ls$ a Master Regulator of Exercise-Induced Cardioprotection and PI3K Gene Therapy Rescues Cardiac Dysfunction. Circulation: Heart Failure, 2012, 5, 523-534.	1.6	115
16	Enhanced phosphoinositide 3-kinase(p $110\hat{l}_{\pm}$) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia, 2012, 55, 3369-3381.	2.9	88