
Stéphane N Hatem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epicardial origin of cardiac arrhythmias: clinical evidences and pathophysiology. Cardiovascular Research, 2022, 118, 1693-1702.	1.8	12
2	Altered cardiac reserve is a determinant of exercise intolerance in sickle cell anaemia patients. European Journal of Clinical Investigation, 2022, 52, e13664.	1.7	3
3	Characterizing cardiac phenotype in Friedreich's ataxia: The CARFA study. Archives of Cardiovascular Diseases, 2022, 115, 17-28.	0.7	4
4	Impacts of a high-fat diet on the metabolic profile and the phenotype of atrial myocardium in mice. Cardiovascular Research, 2022, 118, 3126-3139.	1.8	15
5	Atrial fibrillation and stroke: are we looking in the right direction?. Cardiovascular Research, 2022, 118, e4-e5.	1.8	4
6	Revealing the molecular history of the transition from paroxysmal to permanent atrial fibrillation. Cardiovascular Research, 2021, 117, 1612-1613.	1.8	1
7	Dysregulated Phenylalanine Catabolism Plays a Key Role in the Trajectory of Cardiac Aging. Circulation, 2021, 144, 559-574.	1.6	38
8	Piezo1 and BKCa channels in human atrial fibroblasts: Interplay and remodelling in atrial fibrillation. Journal of Molecular and Cellular Cardiology, 2021, 158, 49-62.	0.9	26
9	Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells, 2021, 10, 2417.	1.8	12
10	Dynamic risk assessment to improve quality of care in patients with atrial fibrillation: the 7th AFNET/EHRA Consensus Conference. Europace, 2021, 23, 329-344.	0.7	38
11	Distinct calcium/calmodulin-dependent serine protein kinase domains control cardiac sodium channel membrane expression and focal adhesion anchoring. Heart Rhythm, 2020, 17, 786-794.	0.3	8
12	Reactivation of the Epicardium at the Origin of Myocardial Fibro-Fatty Infiltration During the Atrial Cardiomyopathy. Circulation Research, 2020, 126, 1330-1342.	2.0	45
13	Microtubule polymerization state and clathrin-dependent internalization regulate dynamics of cardiac potassium channel. Journal of Molecular and Cellular Cardiology, 2020, 144, 127-139.	0.9	8
14	Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. Journal of Clinical Investigation, 2020, 130, 2630-2643.	3.9	42
15	No effect of triheptanoin on exercise performance in McArdle disease. Annals of Clinical and Translational Neurology, 2019, 6, 1949-1960.	1.7	17
16	Integrating new approaches to atrial fibrillation management: the 6th AFNET/EHRA Consensus Conference. Europace, 2018, 20, 395-407.	0.7	95
17	Cardiac MR Strain: A Noninvasive Biomarker of Fibrofatty Remodeling of the Left Atrial Myocardium. Radiology, 2018, 286, 83-92.	3.6	38
18	Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. European Heart Journal, 2017, 38, 53-61.	1.0	198

#	Article	IF	CITATIONS
19	EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterization, and clinical implication. Heart Rhythm, 2017, 14, e3-e40.	0.3	442
20	Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E771-E780.	3.3	74
21	Effect of intracoronary administration of <scp>AAV1</scp> / <scp>SERCA2a</scp> on ventricular remodelling in patients with advanced systolic heart failure: results from the <scp>AGENTâ€HF</scp> randomized phase 2 trial. European Journal of Heart Failure, 2017, 19, 1534-1541.	2.9	75
22	EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace, 2016, 18, 1455-1490.	0.7	471
23	EHRA/HRS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: Definition, characterisation, and clinical implication. Journal of Arrhythmia, 2016, 32, 247-278.	0.5	92
24	Direct Thrombin Inhibitors Prevent LeftÂAtrial Remodeling Associated WithÂHeart Failure in Rats. JACC Basic To Translational Science, 2016, 1, 328-339.	1.9	35
25	Lateral Membrane-Specific MAGUK CASK Down-Regulates Na _V 1.5 Channel in Cardiac Myocytes. Circulation Research, 2016, 119, 544-556.	2.0	44
26	Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment. Nature Reviews Cardiology, 2016, 13, 230-237.	6.1	122
27	Cardiac adipose tissue and atrial fibrillation: the perils of adiposity. Cardiovascular Research, 2016, 109, 502-509.	1.8	101
28	Left atrial aging: a cardiac magnetic resonance feature-tracking study. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H542-H549.	1.5	43
29	Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. European Heart Journal, 2016, 37, 1573-1581.	1.0	137
30	A roadmap to improve the quality of atrial fibrillation management: proceedings from the fifth Atrial Fibrillation Network/European Heart Rhythm Association consensus conference. Europace, 2016, 18, 37-50.	0.7	121
31	Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1. Neuromuscular Disorders, 2015, 25, 308-320.	0.3	26
32	Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. European Heart Journal, 2015, 36, 795-805.	1.0	423
33	Cardiac-specific ablation of synapse-associated protein SAP97 in mice decreases potassium currents but not sodium current. Heart Rhythm, 2015, 12, 181-192.	0.3	53
34	Assessment of left atrial function by MRI myocardial feature tracking. Journal of Magnetic Resonance Imaging, 2015, 42, 379-389.	1.9	56
35	Atrial Fibrillation and Obesity. Journal of the American College of Cardiology, 2015, 66, 12-13.	1.2	12
36	Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovascular Research, 2015, 108, 62-73.	1.8	155

STéPHANE N HATEM

#	Article	IF	CITATIONS
37	The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results. Europace, 2015, 17, 1457-1466.	0.7	8
38	Macromolecular Complexes and Cardiac Potassium Channels. , 2014, , 197-204.		0
39	A glimpse at cardiac ion channel macromolecular complexes. Cardiovascular Research, 2014, 102, 344-345.	1.8	4
40	Epicardial adipose tissue and atrial fibrillation. Cardiovascular Research, 2014, 102, 205-213.	1.8	176
41	ls epicardial adipose tissue an epiphenomenon or a new player in the pathophysiology of atrial fibrillation?. Archives of Cardiovascular Diseases, 2014, 107, 349-352.	0.7	9
42	Maximal exercise limitation in functionally overreached triathletes: role of cardiac adrenergic stimulation. Journal of Applied Physiology, 2014, 117, 214-222.	1.2	44
43	F 16915 prevents heart failure-induced atrial fibrillation: a promising new drug as upstream therapy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 667-677.	1.4	7
44	A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm, 2014, 11, 1015-1023.	0.3	43
45	Brugada syndrome and abnormal splicing of SCN5A in myotonic dystrophy type 1. Archives of Cardiovascular Diseases, 2013, 106, 635-643.	0.7	51
46	Overexpression of cAMP-response element modulator causes abnormal growth and development of the atrial myocardium resulting in a substrate for sustained atrial fibrillation in mice. International Journal of Cardiology, 2013, 166, 366-374.	0.8	57
47	Voluntary Physical Activity Protects from Susceptibility to Skeletal Muscle Contraction–Induced Injury But Worsens Heart Function in mdx Mice. American Journal of Pathology, 2013, 182, 1509-1518.	1.9	45
48	Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3955-64.	3.3	72
49	Dominant-negative effect of SCN5A N-terminal mutations through the interaction of Nav1.5 α-subunits. Cardiovascular Research, 2012, 96, 53-63.	1.8	87
50	Long-term Outcomes of Pandemic 2009 Influenza A(H1N1)-Associated Severe ARDS. Chest, 2012, 142, 583-592.	0.4	199
51	A new method of ultrasonic nonviral gene delivery to the adult myocardium. Journal of Molecular and Cellular Cardiology, 2012, 53, 801-808.	0.9	13
52	Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB Journal, 2012, 26, 1009-1017.	0.2	61
53	Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiological Reviews, 2012, 92, 1317-1358.	13.1	101
54	Mesenchymal Stem Cell Delivery into Rat Infarcted Myocardium Using a Porous Polysaccharide-Based Scaffold: A Quantitative Comparison With Endocardial Injection. Tissue Engineering - Part A, 2012, 18, 35-44.	1.6	51

STéPHANE N HATEM

#	Article	IF	CITATIONS
55	SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2011, 50, 621-633.	0.9	55
56	SAP97 and Dystrophin Macromolecular Complexes Determine Two Pools of Cardiac Sodium Channels Na _v 1.5 in Cardiomyocytes. Circulation Research, 2011, 108, 294-304.	2.0	236
57	<i>MOG1</i> . Circulation: Cardiovascular Genetics, 2011, 4, 261-268.	5.1	151
58	Response to the Letter by Kattygnarath et al. Circulation: Cardiovascular Genetics, 2011, 4, .	5.1	0
59	Normal targeting of a tagged Kv1.5 channel acutely transfected into fresh adult cardiac myocytes by a biolistic method. American Journal of Physiology - Cell Physiology, 2010, 298, C1343-C1352.	2.1	7
60	Specificities of atrial electrophysiology: Clues to a better understanding of cardiac function and the mechanisms of arrhythmias. Journal of Molecular and Cellular Cardiology, 2010, 48, 90-95.	0.9	33
61	Cholesterol modulates the recruitment of Kv1.5 channels from Rab11-associated recycling endosome in native atrial myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14681-14686.	3.3	82
62	Kv4 Potassium Channels Form a Tripartite Complex With the Anchoring Protein SAP97 and CaMKII in Cardiac Myocytes. Circulation Research, 2009, 104, 758-769.	2.0	81
63	Peroxisome proliferator-activated receptor \hat{I}^2 stimulation induces rapid cardiac growth and angiogenesis via direct activation of calcineurin. Cardiovascular Research, 2009, 83, 61-71.	1.8	58
64	Statin, the black box. Archives of Cardiovascular Diseases, 2008, 101, 377-379.	0.7	0
65	Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation. European Heart Journal, 2008, 29, 1190-1197.	1.0	58
66	Protease-Activated Receptor-1 Mediates Thrombin-Induced Persistent Sodium Current in Human Cardiomyocytes. Molecular Pharmacology, 2008, 73, 1622-1631.	1.0	19
67	The anchoring protein SAP97 retains Kv1.5 channels in the plasma membrane of cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1851-H1861.	1.5	43
68	Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. Journal of Clinical Investigation, 2008, 118, 2747-2757.	3.9	105
69	Mutation of δ-Sarcoglycan Is Associated with Ca2+-Dependent Vascular Remodeling in the Syrian Hamster. American Journal of Pathology, 2007, 171, 162-171.	1.9	20
70	Membrane cholesterol modulates Kv1.5 potassium channel distribution and function in rat cardiomyocytes. Journal of Physiology, 2007, 582, 1205-1217.	1.3	81
71	Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts. Cardiovascular Research, 2006, 72, 69-79.	1.8	95
72	Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. European Heart Journal, 2005, 26, 2193-2199.	1.0	180

STéPHANE N HATEM

#	Article	IF	CITATIONS
73	Does the loss of transverse tubules contribute to dyssynchronous Ca2+ release during heart failure?. Cardiovascular Research, 2004, 62, 1-3.	1.8	3
74	Moderate and chronic hemodynamic overload of sheep atria induces reversible cellular electrophysiologic abnormalities and atrial vulnerability. Journal of the American College of Cardiology, 2004, 44, 1918-1926.	1.2	64
75	Fibrosis of the left atria during progression of heart failure is associated with increased matrix metalloproteinases in the rat. Journal of the American College of Cardiology, 2003, 42, 336-344.	1.2	176
76	Different Isoforms of Synapse-associated Protein, SAP97, Are Expressed in the Heart and Have Distinct Effects on the Voltage-gated K+ Channel Kv1.5. Journal of Biological Chemistry, 2003, 278, 47046-47052.	1.6	45
77	Expression, regulation and role of the MACUK protein SAP-97 in human atrial myocardium. Cardiovascular Research, 2002, 56, 433-442.	1.8	51
78	Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro. Cardiovascular Research, 2002, 55, 38-52.	1.8	88
79	Cumulative Inactivation of the Outward Potassium Current: a Likely Mechanism Underlying Electrical Memory in Human Atrial Myocytes. Journal of Molecular and Cellular Cardiology, 2001, 33, 755-767.	0.9	14
80	How to Optimize In Vivo Gene Transfer to Cardiac Myocytes: Mechanical or Pharmacological Procedures?. Human Gene Therapy, 2001, 12, 1601-1610.	1.4	69
81	Adult cardiac myocytes survive and remain excitable during long-term culture on synthetic supports. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 510-519.	0.4	17
82	Highly Efficient Adenovirus-Mediated Gene Transfer to Cardiac Myocytes after Single-Pass Coronary Delivery. Human Gene Therapy, 2000, 11, 1015-1022.	1.4	51
83	Doxorubicin induces slow ceramide accumulation and late apoptosis in cultured adult rat ventricular myocytes. Cardiovascular Research, 1999, 43, 398-407.	1.8	78
84	Myocardial cell death in fibrillating and dilated human right atria. Journal of the American College of Cardiology, 1999, 34, 1577-1586.	1.2	272
85	Primary Culture of Human Atrial Myocytes is Associated with the Appearance of Structural and Functional Characteristics of Immature Myocardium. Journal of Molecular and Cellular Cardiology, 1997, 29, 1307-1320.	0.9	27
86	The antiarrhythmic agent bertosamil induces inactivation of the sustained outward K+ current in human atrial myocytes. British Journal of Pharmacology, 1997, 122, 291-301.	2.7	10
87	Pro-arrhythmic effect of nicorandil in isolated rabbit atria and its suppression by tolbutamide and quinidine. European Journal of Pharmacology, 1992, 229, 91-96.	1.7	15