Martyn N. Futter

List of Publications by Citations

Source: https://exaly.com/author-pdf/7080199/martyn-n-futter-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 249
 10,780
 54
 92

 papers
 citations
 h-index
 g-index

 253
 12,789
 6.5
 6.62

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
249	Are Agricultural Soils Dumps for Microplastics of Urban Origin?. <i>Environmental Science & Emp;</i> Technology, 2016 , 50, 10777-10779	10.3	576
248	Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?. <i>Science of the Total Environment</i> , 2018 , 645, 1029-1039	10.2	538
247	Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling. <i>Ecosystems</i> , 2011 , 14, 880-893	3.9	281
246	A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 1050-9	4.3	266
245	Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. <i>Hydrological Processes</i> , 2004 , 18, 185-189	3.3	265
244	On the forest coverwater yield debate: from demand- to supply-side thinking. <i>Global Change Biology</i> , 2012 , 18, 806-820	11.4	263
243	Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. <i>Global Change Biology</i> , 2008 , 14, 1191-1198	11.4	224
242	The Krycklan Catchment Study flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. <i>Water Resources Research</i> , 2013 , 49, 7154-7158	5.4	172
241	A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. <i>Forest Ecology and Management</i> , 2011 , 262, 95-104	3.9	163
240	Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. <i>Water Resources Research</i> , 2004 , 40,	5.4	160
239	Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 430-435	11	158
238	Evasion of CO2 from streams - the dominant component of the carbon export through the aquatic conduit in a boreal landscape. <i>Global Change Biology</i> , 2013 , 19, 785-97	11.4	144
237	Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. <i>Water Resources Research</i> , 2007 , 43,	5.4	138
236	Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. <i>Journal of Geophysical Research</i> , 2007 , 112,		125
235	Human domination of the global water cycle absent from depictions and perceptions. <i>Nature Geoscience</i> , 2019 , 12, 533-540	18.3	124
234	Groundwater dynamics along a hillslope: A test of the steady state hypothesis. <i>Water Resources Research</i> , 2003 , 39,	5.4	121
233	Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. <i>Environmental Pollution</i> , 2016 , 208, 704-13	9.3	118

(2013-2009)

232	Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream. <i>Environmental Science & Environmental S</i>	10.3	118	
231	Pollution: Do microplastics spill on to farm soils?. <i>Nature</i> , 2016 , 537, 488	50.4	116	
230	Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. <i>Limnology and Oceanography</i> , 2007 , 52, 2013-2026	4.8	110	
229	Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. <i>Water Research</i> , 2016 , 97, 122-32	12.5	109	
228	Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. <i>Journal of Geophysical Research</i> , 2008 , 113,		103	
227	Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. <i>Environmental Science & amp; Technology</i> , 2003 , 37, 1726-30	10.3	98	
226	Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 1057-69	4.3	94	
225	Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. <i>Science of the Total Environment</i> , 2020 , 724, 138334	10.2	94	
224	The Swedish monitoring of surface waters: 50 years of adaptive monitoring. <i>Ambio</i> , 2014 , 43 Suppl 1, 3-18	6.5	94	
223	Spatial variation of streamwater chemistry in two Swedish boreal catchments: implications for environmental assessment. <i>Environmental Science & Environmental Science & Envir</i>	10.3	93	
222	Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. <i>Geophysical Research Letters</i> , 2010 , 37,	4.9	92	
221	In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes. <i>Water Research</i> , 2016 , 97, 142-52	12.5	91	
220	In-lake processes offset increased terrestrial inputs of dissolved organic carbon and color to lakes. <i>PLoS ONE</i> , 2013 , 8, e70598	3.7	90	
219	THE EFFECT OF EL NID-RELATED DROUGHT ON THE RECOVERY OF ACIDIFIED LAKES. <i>Environmental Monitoring and Assessment</i> , 1997 , 46, 105-111	3.1	87	
218	Photochemical and microbial processing of stream and soil water dissolved organic matter in a boreal forested catchment in northern Sweden 2002 , 64, 269-281		86	
217	Upscaling Nitrogen Removal Capacity from Local Hotspots to Low Stream OrdersDrainage Basins. <i>Ecosystems</i> , 2015 , 18, 1101-1120	3.9	85	
216	Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: Concentrations and downstream fluxes. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		81	
215	Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada. <i>Journal of Great Lakes Research</i> , 2013 , 39, 19-32	3	80	

214	Long-term dynamics of dissolved organic carbon: implications for drinking water supply. <i>Science of the Total Environment</i> , 2012 , 432, 1-11	10.2	76
213	Terrestrial sources of methylmercury in surface waters: The importance of the riparian zone on the Svartberget Catchment. <i>Water, Air, and Soil Pollution</i> , 1995 , 80, 435-444	2.6	73
212	PERSiST: a flexible rainfall-runoff modelling toolkit for use with the INCA family of models. <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 855-873	5.5	71
211	Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. <i>Biogeosciences</i> , 2013 , 10, 2315-2330	4.6	70
210	Silicate mineral weathering rate estimates: Are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting?. <i>Forest Ecology and Management</i> , 2011 , 261, 1-9	3.9	69
209	Variability in organic carbon reactivity across lake residence time and trophic gradients. <i>Nature Geoscience</i> , 2017 , 10, 832-835	18.3	68
208	Effect of climate change on soil temperature in Swedish boreal forests. <i>PLoS ONE</i> , 2014 , 9, e93957	3.7	68
207	The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 1491-1505	3.7	67
206	Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times. <i>Hydrological Processes</i> , 2011 , 25, 3950-3959	3.3	67
205	Forest cover change over four decades in the Blue Nile Basin, Ethiopia: comparison of three watersheds. <i>Regional Environmental Change</i> , 2014 , 14, 253-266	4.3	66
204	Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 1082-97	4.3	65
203	Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems. <i>Science of the Total Environment</i> , 2003 , 304, 83-106	10.2	64
202	Flux rates of atmospheric lead pollution within soils of a small catchment in northern Sweden and their implications for future stream water quality. <i>Environmental Science & Environmental Science &</i>	10.3	62
201	Identification of the riparian sources of aquatic dissolved organic carbon. <i>Environment International</i> , 1994 , 20, 11-19	12.9	62
200	Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe. <i>Environmental Pollution</i> , 2017 , 220, 1438-1446	9.3	59
199	Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters. <i>Forests</i> , 2011 , 2, 243-260	2.8	59
198	Response of dissolved organic carbon following forest harvesting in a boreal forest. <i>Ambio</i> , 2009 , 38, 381-6	6.5	58
197	The effects of forestry on Hg bioaccumulation in nemoral/boreal waters and recommendations for good silvicultural practice. <i>Ambio</i> , 2009 , 38, 373-80	6.5	57

(2013-2011)

196	Riparian soil temperature modification of the relationship between flow and dissolved organic carbon concentration in a boreal stream. <i>Water Resources Research</i> , 2011 , 47,	5.4	56	
195	Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. <i>Scientific Reports</i> , 2017 , 7, 9158	4.9	54	
194	Consequences of nitrate leaching following stem-only harvesting of Swedish forests are dependent on spatial scale. <i>Environmental Pollution</i> , 2010 , 158, 3552-9	9.3	54	
193	Almost 50lyears of monitoring shows that climate, not forestry, controls long-term organic carbon fluxes in a large boreal watershed. <i>Global Change Biology</i> , 2014 , 20, 1225-37	11.4	53	
192	Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone. <i>Water Resources Research</i> , 2017 , 53, 942-960	5-4	52	
191	Patterns and trends in Southern Ontario lake ice phenology. <i>Environmental Monitoring and Assessment</i> , 2003 , 88, 431-44	3.1	52	
190	Soil frost and runoff at Svartberget, northern Swedentheasurements and model analysis. Hydrological Processes, 2002 , 16, 3379-3392	3.3	51	
189	Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. <i>Ambio</i> , 2016 , 45 Suppl 2, 175-87	6.5	49	
188	Forest cover and stream flow in a headwater of the Blue Nile: complementing observational data analysis with community perception. <i>Ambio</i> , 2010 , 39, 284-94	6.5	49	
187	Intra-annual variability of organic carbon concentrations in running waters: Drivers along a climatic gradient. <i>Global Biogeochemical Cycles</i> , 2014 , 28, 451-464	5.9	48	
186	Long-term trends in water chemistry of acid-sensitive Swedish lakes show slow recovery from historic acidification. <i>Ambio</i> , 2014 , 43 Suppl 1, 77-90	6.5	48	
185	An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries. <i>Science of the Total Environment</i> , 2010 , 408, 2555-66	10.2	48	
184	A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests. <i>Environmental Pollution</i> , 2008 , 156, 544-52	9.3	47	
183	Towards an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters. <i>Ecosystems</i> , 2018 , 21, 297-315	3.9	46	
182	The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality. <i>Ambio</i> , 2016 , 45 Suppl 2, 152-62	6.5	46	
181	A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,</i> 2013 , 371, 20120413	3	44	
180	Influence of organic acid site density on pH modeling of Swedish lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1999 , 56, 1461-1470	2.4	44	
179	Riparian zone control on base cation concentration in boreal streams. <i>Biogeosciences</i> , 2013 , 10, 3849-386	48 6	43	

178	The interactive responses of water quality and hydrology to changes in multiple stressors, and implications for the long-term effective management of phosphorus. <i>Science of the Total Environment</i> , 2013 , 454-455, 230-44	10.2	42
177	Forest harvest increases runoff most during low flows in two boreal streams. <i>Ambio</i> , 2009 , 38, 357-63	6.5	42
176	Testing seasonal and long-term controls of streamwater DOC using empirical and process-based models. <i>Science of the Total Environment</i> , 2008 , 407, 698-707	10.2	42
175	Spatial heterogeneity of the spring flood acid pulse in a boreal stream network. <i>Science of the Total Environment</i> , 2008 , 407, 708-22	10.2	42
174	Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. <i>Geophysical Research Letters</i> , 2001 , 28, 1227-1230	4.9	42
173	Acid/base character of organic acids in a boreal stream during snowmelt. <i>Water Resources Research</i> , 2001 , 37, 1043-1056	5.4	42
172	Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. <i>Science of the Total Environment</i> , 2020 , 709, 136144	10.2	42
171	Representative regional sampling of carbon dioxide and methane concentrations in hemiboreal headwater streams reveal underestimates in less systematic approaches. <i>Global Biogeochemical Cycles</i> , 2014 , 28, 465-479	5.9	41
170	Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. <i>Science of the Total Environment</i> , 2016 , 560-561, 110-22	10.2	41
169	Persistent and widespread long-term phosphorus declines in Boreal lakes in Sweden. <i>Science of the Total Environment</i> , 2018 , 613-614, 240-249	10.2	40
168	Impact of forestry on total and methyl-mercury in surface waters: distinguishing effects of logging and site preparation. <i>Environmental Science & Environmental Science & Env</i>	10.3	40
167	Patterns and drivers of riverine nitrogen (N) across alpine, subarctic, and boreal Sweden. <i>Biogeochemistry</i> , 2014 , 120, 105-120	3.8	40
166	Increasing Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and Helps Resolve a Classic Controversy. <i>BioScience</i> , 2011 , 61, 614-618	5.7	40
165	Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: Importance of representing sorption. <i>Water Resources Research</i> , 2008 , 44,	5.4	40
164	Is the water footprint an appropriate tool for forestry and forest products: the Fennoscandian case. <i>Ambio</i> , 2014 , 43, 244-56	6.5	39
163	Total Phosphorus Budgets and Nitrogen Loads: Lake Simcoe, Ontario (1990 to 1998). <i>Journal of Great Lakes Research</i> , 2002 , 28, 301-314	3	39
162	High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter. <i>Limnology and Oceanography</i> , 2018 , 63, S44-S53	4.8	39
161	Stream Nitrate Responds Rapidly to Decreasing Nitrate Deposition. <i>Ecosystems</i> , 2011 , 14, 274-286	3.9	37

160	A long-term simulation of the effects of acidic deposition and climate change on surface water dissolved organic carbon concentrations in a boreal catchment 2009 , 40, 291-305		36	
159	Managing Swedish forestry's impact on mercury in fish: Defining the impact and mitigation measures. <i>Ambio</i> , 2016 , 45 Suppl 2, 163-74	6.5	35	
158	Meta-analysis of environmental effects of beaver in relation to artificial dams. <i>Environmental Research Letters</i> , 2017 , 12, 113002	6.2	34	
157	Carbon dioxide and methane emissions of Swedish low-order streams national estimate and lessons learnt from more than a decade of observations. <i>Limnology and Oceanography Letters</i> , 2018 , 3, 156-167	7.9	34	
156	Simulating dissolved organic carbon dynamics at the swedish integrated monitoring sites with the integrated catchments model for carbon, INCA-C. <i>Ambio</i> , 2011 , 40, 906-19	6.5	34	
155	Evolution of soil solution aluminum during transport along a forested boreal hillslope. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		34	
154	Spatial and temporal variation of THg concentrations in run-off water from 19 boreal catchments, 2000-2010. <i>Environmental Pollution</i> , 2012 , 164, 102-9	9.3	33	
153	Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications. <i>Environmental Research Letters</i> , 2012 , 7, 024025	6.2	33	
152	Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 102, 1-11	5.5	32	
151	Impact of stump harvest on run-off concentrations of total mercury and methylmercury. <i>Forest Ecology and Management</i> , 2013 , 290, 83-94	3.9	32	
150	Riparian zone influence on stream water dissolved organic carbon concentrations at the Swedish integrated monitoring sites. <i>Ambio</i> , 2011 , 40, 920-30	6.5	32	
149	A Review of the Components, Coefficients and Technical Assumptions of Ontario's Lakeshore Capacity Model. <i>Lake and Reservoir Management</i> , 2006 , 22, 7-18	1.3	32	
148	Ecological resilience in lakes and the conjunction fallacy. <i>Nature Ecology and Evolution</i> , 2017 , 1, 1616-16	24 2.3	31	
147	Modelling the effects of climate on long-term patterns of dissolved organic carbon concentrations in the surface waters of a boreal catchment. <i>Hydrology and Earth System Sciences</i> , 2008 , 12, 437-447	5.5	31	
146	Organic carbon in the boreal spring flood from adjacent subcatchments. <i>Environment International</i> , 1996 , 22, 535-540	12.9	31	
145	Assessing the impacts of climate change and socio-economic changes on flow and phosphorus flux in the Ganga river system. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 1098-110	4.3	30	
144	Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. <i>Science of the Total Environment</i> , 2020 , 721, 137647	10.2	29	
143	Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution. <i>Scientific Reports</i> , 2017 , 7, 16022	4.9	29	

142	Variability in spectral absorbance metrics across boreal lake waters. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2643-52		29
141	Modelling phosphorus dynamics in multi-branch river systems: a study of the Black River, Lake Simcoe, Ontario, Canada. <i>Science of the Total Environment</i> , 2011 , 412-413, 315-23	10.2	29
140	Direct and indirect effects of increasing dissolved organic carbon levels on pH in lakes recovering from acidification. <i>Journal of Geophysical Research</i> , 2010 , 115,		29
139	A Novel Environmental Quality Criterion for Acidification in Swedish Lakes An Application of Studies on the Relationship Between Biota and Water Chemistry. <i>Water, Air and Soil Pollution</i> , 2007 , 7, 331-338		29
138	Reviews and syntheses: Biological weathering and its consequences at different spatial levels [] from nanoscale to global scale. <i>Biogeosciences</i> , 2020 , 17, 1507-1533	4.6	29
137	A water cycle for the Anthropocene. <i>Hydrological Processes</i> , 2019 , 33, 3046-3052	3.3	28
136	Hydrological change detection using modeling: Half a century of runoff from four rivers in the Blue Nile Basin. <i>Water Resources Research</i> , 2013 , 49, 3842-3851	5.4	28
135	Modelling the impacts of climate change on flow and nitrate in the River Thames: assessing potential adaptation strategies 2012 , 43, 902-916		28
134	Pelagic food-web structure influences probability of mercury contamination in lake trout (Salvelinus namaycush). <i>Science of the Total Environment</i> , 1994 , 145, 7-12	10.2	28
133	Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. <i>Journal of Hydrology</i> , 2018 , 561, 160-178	6	27
132	The effects of forest harvest operations on mercury and methylmercury in two boreal streams: relatively small changes in the first two years prior to site preparation. <i>Ambio</i> , 2009 , 38, 364-72	6.5	27
131	Forestry Influence by Stump Harvest and Site Preparation on Methylmercury, Total Mercury and Other Stream Water Chemistry Parameters Across a Boreal Landscape. <i>Ecosystems</i> , 2012 , 15, 1308-1320) ^{3.9}	26
130	Direct Impacts of Climate Change on Freshwater Ecosystems 2010 , 38-64		26
129	Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes. <i>Aquatic Sciences</i> , 2013 , 75, 535-545	2.5	25
128	Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. <i>Journal of Paleolimnology</i> , 2011 , 45, 507-518	2.1	25
127	Seasonal and runoff-related changes in total organic carbon concentrations in the River Ee, Northern Sweden. <i>Aquatic Sciences</i> , 2008 , 70, 21-29	2.5	25
126	An INCA model for pathogens in rivers and catchments: Model structure, sensitivity analysis and application to the River Thames catchment, UK. <i>Science of the Total Environment</i> , 2016 , 572, 1601-1610	10.2	25
125	Landscape-scale control of carbon budget of Lake Simcoe: A process-based modelling approach. <i>Journal of Great Lakes Research</i> , 2011 , 37, 160-165	3	24

(2009-2009)

124	Long-term trends in hydro-climatology of a major Scottish mountain river. <i>Science of the Total Environment</i> , 2009 , 407, 4633-41	10.2	24
123	Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: An application of INCA model. <i>Science of the Total Environment</i> , 2018 , 631-632, 201-215	10.2	23
122	Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model. <i>Science of the Total Environment</i> , 2016 , 544, 553-63	10.2	23
121	Problems with the reconciliation of good ecological status and public participation in the Water Framework Directive. <i>Science of the Total Environment</i> , 2012 , 433, 482-90	10.2	23
120	Modelling the long term impact of climate change on the carbon budget of Lake Simcoe, Ontario using INCA-C. <i>Science of the Total Environment</i> , 2012 , 414, 387-403	10.2	22
119	Gridded climate data products are an alternative to instrumental measurements as inputs to rainfallEunoff models. <i>Hydrological Processes</i> , 2017 , 31, 3283-3293	3.3	22
118	Relations between organic carbon and methylmercury in humic rich surface waters from Svartberget catchment in northern Sweden. <i>Water, Air, and Soil Pollution,</i> 1995 , 80, 971-979	2.6	22
117	Toward catchment hydro-biogeochemical theories. Wiley Interdisciplinary Reviews: Water, 2021 , 8, e149	5 5.7	22
116	Flows and sediment dynamics in the Ganga River under present and future climate scenarios. <i>Hydrological Sciences Journal</i> , 2018 , 63, 763-782	3.5	21
115	Conceptualizing and communicating management effects on forest water quality. <i>Ambio</i> , 2016 , 45 Suppl 2, 188-202	6.5	21
114	Using the INCA-Hg model of mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. <i>Science of the Total Environment</i> , 2012 , 424, 219-31	10.2	21
113	Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography. <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 5125-5148	5.5	21
112	Evaluating common drivers for color, iron and organic carbon in Swedish watercourses. <i>Ambio</i> , 2014 , 43 Suppl 1, 30-44	6.5	21
111	Nature as the "natural" goal for water management: a conversation. <i>Ambio</i> , 2009 , 38, 209-14	6.5	21
110	Modelling ice cover, timing of spring stratification, and end-of-season mixing depth in small Precambrian Shield lakes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2005 , 62, 2134-2142	2.4	21
109	Fate and transport of polychlorinated biphenyls (PCBs) in the River Thames catchment - Insights from a coupled multimedia fate and hydrobiogeochemical transport model. <i>Science of the Total Environment</i> , 2016 , 572, 1461-1470	10.2	20
108	Cross-scale ensemble projections of dissolved organic carbon dynamics in boreal forest streams. <i>Climate Dynamics</i> , 2014 , 42, 2305-2321	4.2	20
107	Modelling the effects of changing climate and nitrogen deposition on nitrate dynamics in a Scottish mountain catchment 2009 , 40, 153-166		20

106	Assessing nitrogen dynamics in European ecosystems, integrating measurement and modelling: conclusions. <i>Hydrology and Earth System Sciences</i> , 2004 , 8, 846-857	5.5	20
105	An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations. <i>Science of the Total Environment</i> , 2019 , 651, 103-113	10.2	20
104	Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST. <i>Environmental Sciences: Processes and Impacts</i> , 2015 , 17, 1070-81	4.3	19
103	Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation. <i>Biogeochemistry</i> , 2016 , 127, 305-321	3.8	19
102	Adjacent catchments with similar patterns of land use and climate have markedly different dissolved organic carbon concentration and runoff dynamics. <i>Hydrological Processes</i> , 2014 , 28, 1436-144	13 ·3	19
101	The influence of sulphate deposition on the seasonal variation of peat pore water methyl Hg in a boreal mire. <i>PLoS ONE</i> , 2012 , 7, e45547	3.7	19
100	Modelling nitrogen in the Yellirmak River catchment in Northern Turkey: impacts of future climate and environmental change and implications for nutrient management. <i>Science of the Total Environment</i> , 2011 , 409, 2404-18	10.2	19
99	Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. <i>Global Change Biology</i> , 2021 , 27, 3969-3986	11.4	19
98	Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 126-144	3.7	19
97	Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. <i>Environmental Research Letters</i> , 2018 , 13, 125010	6.2	19
96	Modelling metaldehyde in catchments: a River Thames case-study. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 586-595	4.3	18
95	Simple models to estimate historical and recent changes of total organic carbon concentrations in lakes. <i>Environmental Science & Environmental Scienc</i>	10.3	18
94	Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation matters most. <i>Limnology and Oceanography Letters</i> , 2018 , 3, 275-284	7.9	18
93	Local- and landscape-scale impacts of clear-cuts and climate change on surface water dissolved organic carbon in boreal forests. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2402-242	લે ^{.7}	18
92	The impacts of future climate change and sulphur emission reductions on acidification recovery at Plastic Lake, Ontario. <i>Hydrology and Earth System Sciences</i> , 2008 , 12, 383-392	5.5	18
91	Cantilevering vertical tow nets to reduce tow-line-induced zooplankton avoidance. <i>Journal of Plankton Research</i> , 1993 , 15, 581-587	2.2	18
90	Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. <i>Science of the Total Environment</i> , 2020 , 711, 134616	10.2	17
89	Persistent Organic Pollutants in Streamwater: Influence of Hydrological Conditions and Landscape Type. <i>Environmental Science & Environmental Science </i>	10.3	16

88	Stream Dissolved Organic Matter Composition Reflects the Riparian Zone, Not Upslope Soils in Boreal Forest Headwaters. <i>Water Resources Research</i> , 2018 , 54, 3896-3912	5.4	16	
87	Managing Forests for Both Downstream and Downwind Water. <i>Frontiers in Forests and Global Change</i> , 2019 , 2,	3.7	16	
86	Assessing temporal scales and patterns in time series: Comparing methods based on redundancy analysis. <i>Ecological Complexity</i> , 2015 , 22, 162-168	2.6	16	
85	Assessing anthropogenic impact on boreal lakes with historical fish species distribution data and hydrogeochemical modeling. <i>Global Change Biology</i> , 2014 , 20, 2752-64	11.4	16	
84	Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2010 , 67, 1116-1125	2.4	16	
83	Natural variability in lake pH on seasonal, interannual and decadal time scales: implications for assessment of human impact. <i>Environmental Science & Environmental Science &</i>	10.3	16	
82	Uncertainty assessments and hydrological implications of climate change in two adjacent agricultural catchments of a rapidly urbanizing watershed. <i>Science of the Total Environment</i> , 2014 , 473-474, 326-37	10.2	15	
81	Phosphorus dynamics across intensively monitored subcatchments in the Beaver River. <i>Inland Waters</i> , 2013 , 3, 187-206	2.4	15	
80	Forests, Forestry and the Water Framework Directive in Sweden: A Trans-Disciplinary Commentary. <i>Forests</i> , 2011 , 2, 261-282	2.8	15	
79	Assessment of uncertainty in long-term mass balances for acidification assessments: a MAGIC model exercise. <i>Ambio</i> , 2011 , 40, 891-905	6.5	15	
78	Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: A simple empirical approach for regional predictions. <i>Journal of Geophysical Research</i> , 2010 , 115,		15	
77	Climate proofing Scottish river basin planning & future challenge. <i>Environmental Policy and Governance</i> , 2009 , 19, 374-387	2.6	15	
76	Potential impacts of a future Nordic bioeconomy on surface water quality. <i>Ambio</i> , 2020 , 49, 1722-1735	6.5	15	
75	Does the harvest of logging residues and wood ash application affect the mobilization and bioavailability of trace metals?. <i>Forest Ecology and Management</i> , 2017 , 383, 61-72	3.9	14	
74	Water storage dynamics in a till hillslope: the foundation for modeling flows and turnover times. <i>Hydrological Processes</i> , 2017 , 31, 4-14	3.3	14	
73	Optimizing land management strategies for maximum improvements in lake dissolved oxygen concentrations. <i>Science of the Total Environment</i> , 2019 , 652, 382-397	10.2	14	
72	Impact of Beaver Pond Colonization History on Methylmercury Concentrations in Surface Water. <i>Environmental Science & Environmental Science & Environm</i>	10.3	13	
71	Parsimonious Model for Simulating Total Mercury and Methylmercury in Boreal Streams Based on Riparian Flow Paths and Seasonality. <i>Environmental Science & Environmental Scien</i>	10.3	13	

70	Changes in body dimensions of larval Chaoborus in ethanol and formalin. <i>Journal of Plankton Research</i> , 1994 , 16, 1601-1608	2.2	13
69	Can recovery from disturbance explain observed declines in total phosphorus in Precambrian Shield catchments?. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2016 , 73, 1202-1212	2.4	13
68	Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations. <i>Science of the Total Environment</i> , 2018 , 640-641, 387-399	10.2	13
67	Ecohydrological consequences of tree removal in an urban park evaluated using open data, free software and a minimalist measuring campaign. <i>Science of the Total Environment</i> , 2019 , 655, 1495-1504	10.2	12
66	Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape. <i>Science of the Total Environment</i> , 2015 , 520, 260-9	10.2	12
65	The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska. <i>PLoS ONE</i> , 2013 , 8, e74054	3.7	12
64	Using dry and wet year hydroclimatic extremes to guide future hydrologic projections. <i>Hydrology and Earth System Sciences</i> , 2016 , 20, 2811-2825	5.5	12
63	Soil temperature responses to climate change along a gradient of uplandfiparian transect in boreal forest. <i>Climatic Change</i> , 2017 , 143, 27-41	4.5	11
62	Does forest harvest increase the mercury concentrations in fish? Evidence from Swedish lakes. <i>Science of the Total Environment</i> , 2018 , 622-623, 1353-1362	10.2	11
61	Constitution of a catchment virtual observatory for sharing flow and transport models outputs. <i>Journal of Hydrology</i> , 2016 , 543, 59-66	6	11
60	A comparison of MAGIC and paleolimnological predictions of preindustrial pH for 55 Swedish lakes. <i>Environmental Science & Environmental Science & Env</i>	10.3	11
59	Optimization of aluminum treatment efficiency to control internal phosphorus loading in eutrophic lakes. <i>Water Research</i> , 2020 , 185, 116150	12.5	11
58	Hydrological footprints of urban developments in the Lake Simcoe watershed, Canada: a combined paired-catchment and change detection modelling approach. <i>Hydrological Processes</i> , 2015 , 29, 1829-184	1 3 ·3	10
57	Community perceptions of forestWater relationships in the Blue Nile Basin of Ethiopia. <i>Geo Journal</i> , 2014 , 79, 605-618	2.2	9
56	Consequences of intensive forest harvesting on the recovery of Swedish lakes from acidification and on critical load exceedances. <i>Science of the Total Environment</i> , 2017 , 603-604, 562-569	10.2	9
55	Dynamic Modelling of the Impact of Climate Change and Power Flow Management Options using STELLA: Application to the Steephill Falls Reservoir, Ontario, Canada. <i>Canadian Water Resources Journal</i> , 2012 , 37, 125-148	1.7	9
54	Drivers of long-term invertebrate community stability in changing Swedish lakes. <i>Global Change Biology</i> , 2020 , 26, 1259-1270	11.4	9
53	Global importance of methane emissions from drainage ditches and canals. <i>Environmental Research Letters</i> , 2021 , 16, 044010	6.2	9

(2020-2016)

52	Ecological Instability in Lakes: A Predictable Condition?. <i>Environmental Science & Environmental Scie</i>	10.3	8
51	Weathering rates in Swedish forest soils. <i>Biogeosciences</i> , 2019 , 16, 4429-4450	4.6	8
50	Understanding Dissolved Organic Matter Reactivity and Composition in Lakes and Streams Using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). <i>Environmental Science and Technology Letters</i> , 2018 , 5, 739-744	11	8
49	Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity. <i>Hydrological Processes</i> , 2020 , 34, 2176-2189	3.3	7
48	The effectiveness and resilience of phosphorus management practices in the Lake Simcoe watershed, Ontario, Canada. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 2390-2409	3.7	7
47	Modeling nonlinear responses of DOC transport in boreal catchments in Sweden. <i>Water Resources Research</i> , 2016 , 52, 4970-4989	5.4	7
46	PERSiST: the precipitation, evapotranspiration and runoff simulator for solute transport		7
45	Land-use dominates climate controls on nitrogen and phosphorus export from managed and natural Nordic headwater catchments. <i>Hydrological Processes</i> , 2020 , 34, 4831-4850	3.3	7
44	Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study. <i>Hydrological Processes</i> , 2021 , 35, e14170	3.3	7
43	New Insights Into Legacy Phosphorus From Fractionation of Streambed Sediment. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2020 , 125, e2020JG005763	3.7	6
42	A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE. <i>Hydrology</i> , 2016 , 3, 11	2.8	6
41	Spatial and temporal variation in Arctic freshwater chemistry R eflecting climate-induced landscape alterations and a changing template for biodiversity. <i>Freshwater Biology</i> , 2020 ,	3.1	5
40	Conceptual Mini-Catchment Typologies for Testing Dominant Controls of Nutrient Dynamics in Three Nordic Countries. <i>Water (Switzerland)</i> , 2020 , 12, 1776	3	5
39	Minimal climate change impacts on natural organic matter forecasted for a potable water supply in Ireland. Science of the Total Environment, 2018, 630, 869-877	10.2	5
38	From wicked problem to governable entity? The effects of forestry on mercury in aquatic ecosystems. <i>Forest Policy and Economics</i> , 2018 , 90, 90-96	3.6	5
37	Periodic multivariate normal hidden markov models for the analysis of water quality time series. <i>Environmetrics</i> , 2011 , 22, 304-317	1.3	5
36	Interaction of Climate Change and Acid Deposition 2010 , 152-179		5
35	Forest-Water Interactions Under Global Change. <i>Ecological Studies</i> , 2020 , 589-624	1.1	5

34	Peatland ditch blocking has no effect on dissolved organic matter (DOM) quality. <i>Hydrological Processes</i> , 2018 , 32, 3891-3906	3.3	5
33	Modelling impacts of seasonal wastewater treatment plant effluent permits and biosolid substitution for phosphorus management in catchments and river systems 2015 , 46, 313-324		4
32	A metamodel based on MAGIC to predict the pre-industrial acidity status of surface waters. <i>Aquatic Sciences</i> , 2008 , 70, 238-247	2.5	4
31	A New, Catchment-Scale Integrated Water Quality Model of Phosphorus, Dissolved Oxygen, Biochemical Oxygen Demand and Phytoplankton: INCA-Phosphorus Ecology (PEco). <i>Water</i> (Switzerland), 2021 , 13, 723	3	4
30	Effect of DEM-smoothing and -aggregation on topographically-based flow directions and catchment boundaries. <i>Journal of Hydrology</i> , 2021 , 602, 126717	6	4
29	Estimation of p,p'-DDT degradation in soil by modeling and constraining hydrological and biogeochemical controls. <i>Environmental Pollution</i> , 2018 , 239, 179-188	9.3	3
28	Soil moisture storage estimation based on steady vertical fluxes under equilibrium. <i>Journal of Hydrology</i> , 2017 , 553, 798-804	6	3
27	Hydrology, forests and precipitation recycling: a reply to van der Ent et al. <i>Global Change Biology</i> , 2012 , 18, 3272-3274	11.4	3
26	Impacts of Droughts and Acidic Deposition on Long-Term Surface Water Dissolved Organic Carbon Concentrations in Upland Catchments in Wales. <i>Frontiers in Environmental Science</i> ,8,	4.8	3
25	Modelling the effects of climate on long-term patterns of dissolved organic carbon concentrations in the surface waters of a boreal catchment		3
24	Statistical models for evaluating suspected artefacts in long-term environmental monitoring data. <i>Environmental Monitoring and Assessment</i> , 2018 , 190, 558	3.1	3
23	Elevated temperature and browning increase dietary methylmercury, but decrease essential fatty acids at the base of lake food webs. <i>Scientific Reports</i> , 2021 , 11, 16859	4.9	3
22	Presence of nanoplastics in rural and remote surface waters. <i>Environmental Research Letters</i> , 2022 , 17, 054036	6.2	3
21	Development of Aerial Photos and LIDAR Data Approaches to Map Spatial and Temporal Evolution of Ditch Networks in Peat-Dominated Catchments. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 2021 , 147, 04021006	1.1	2
20	Simulation of water and chemical transport of chloride from the forest ecosystem to the stream. <i>Environmental Modelling and Software</i> , 2021 , 138, 104984	5.2	2
19	A 25-year retrospective analysis of factors influencing success of aluminum treatment for lake restoration. <i>Water Research</i> , 2021 , 200, 117267	12.5	2
18	Response to a letter to editor regarding Kotta et al. 2020: Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. <i>Science of the Total Environment</i> , 2020 , 739, 138712	10.2	1
17	Longer Growing Seasons Cause Hydrological Regime Shifts in Central European Forests. <i>Forests</i> , 2021 , 12, 1656	2.8	1

LIST OF PUBLICATIONS

16	Riparian zone controls on base cation concentrations in boreal streams		1
15	Long term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity		1
14	Effects of conservation strip and crop type on natural enemies of Delia radicum. <i>Journal of Applied Entomology</i> , 2016 , 140, 287-298	1.7	1
13	Brownification on hold: What traditional analyses miss in extended surface water records. <i>Water Research</i> , 2021 , 203, 117544	12.5	1
12	Significant Emissions From Forest Drainage Ditches In Unaccounted Term in Anthropogenic Greenhouse Gas Inventories?. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2021JG006	5 47 8	1
11	Use of stable Mg isotope ratios in identifying the base cation sources of stream water in the boreal Krycklan catchment (Sweden). <i>Chemical Geology</i> , 2022 , 588, 120651	4.2	O
10	Turbidity-discharge hysteresis in a meso-scale catchment: The importance of intermediate scale events. <i>Hydrological Processes</i> , 2021 , 35, e14435	3.3	О
9	Future changes in the Dominant Source Layer of riparian lateral water fluxes in a subhumid Mediterranean catchment. <i>Journal of Hydrology</i> , 2021 , 595, 126014	6	O
8	Trilemma of Nordic B altic Forestry⊞ow to Implement UN Sustainable Development Goals. <i>Sustainability</i> , 2021 , 13, 5643	3.6	0
7	Nutrient Load Mitigation with Wintertime Cover as Estimated by the INCA Model. <i>Water</i> (Switzerland), 2021 , 13, 450	3	O
6	Stakeholder Perspectives on Blue Mussel Farming to Mitigate Baltic Sea Eutrophication. <i>Sustainability</i> , 2021 , 13, 9180	3.6	O
5	Where and When to Collect Tracer Data to Diagnose Hillslope Permeability Architecture. <i>Water Resources Research</i> , 2021 , 57, e2020WR028719	5.4	O
4	Assessing the potential for sea-based macroalgae cultivation and its application for nutrient removal in the Baltic Sea. <i>Science of the Total Environment</i> , 2022 , 156230	10.2	О
3	Modelling stream and soil water nitrate dynamics during experimentally increased nitrogen deposition in a coniferous forest catchment at GEdsjE, Sweden 2009 , 40, 187-197		
2	Commentary: A (Mostly) Hydrological Commentary on the Small Retention Programs in the Polish Forests 2019 , 39-43		
1	Variability in fluvial suspended and streambed sediment phosphorus fractions among small agricultural streams. <i>Journal of Environmental Quality</i> , 2021 , 50, 612-626	3.4	