Jyoti Jaiswal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080188/publications.pdf

Version: 2024-02-01

54 papers	1,983 citations	25 h-index	254184 43 g-index
			2022
55 all docs	55 docs citations	55 times ranked	2020 citing authors

#	Article	IF	CITATIONS
1	Electrochemical corrosion characteristics of hierarchical O-TiN coating on 304L steel substrate. Surface and Coatings Technology, 2022, 433, 128079.	4.8	10
2	Optical and electrical tunability in vertically aligned MoS2 thin films prepared by DC sputtering: Role of film thickness. Vacuum, 2022, 198, 110903.	3.5	8
3	NO2 sensors based on crystalline MoSe2 porous nanowall thin films with vertically aligned molecular layers prepared by sputtering. Sensors and Actuators B: Chemical, 2022, 359, 131552.	7.8	12
4	Optical properties investigation of reactively sputtered tantalum oxynitride films. Materials Today: Proceedings, 2022, 57, 202-210.	1.8	1
5	Room temperature sputtered nanocrystalline SnO2 thin films sensitized with Pd nanoparticles for high performance CO gas sensing application. Optical Materials, 2022, 128, 112362.	3.6	14
6	The role of non-homogeneous barrier on the electrical performance of 15R–SiC Schottky diodes grown by in-situ RF sputtering. Materials Science in Semiconductor Processing, 2022, 149, 106855.	4.0	10
7	Tuning the wettability of highly transparent Nb2O5 nano-sliced coatings to enhance anti-corrosion property. Materials Science in Semiconductor Processing, 2021, 123, 105513.	4.0	19
8	Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sensors and Actuators B: Chemical, 2021, 327, 128862.	7.8	55
9	Elevated performance of binder-free Co ₃ O ₄ electrode for the supercapacitor applications. Nano Express, 2021, 2, 010002.	2.4	19
10	Anticorrosive Behavior Enhancement of Stainless Steel 304 through Tantalum-Based Coatings: Role of Coating Morphology. Journal of Materials Engineering and Performance, 2021, 30, 1895-1905.	2.5	5
11	Corrigendum to "Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process―[Vacuum 177 (2020) 109353]. Vacuum, 2021, 184, 109885.	3.5	0
12	MoS2 nanoworm thin films for NO2 gas sensing application. Thin Solid Films, 2021, 725, 138625.	1.8	26
13	Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon, 2021, 177, 291-303.	10.3	76
14	Single step fabrication of nanostructured Cr2O3-MoO2 composite flexible electrode for top-notch asymmetric supercapacitor. Applied Surface Science, 2021, 555, 149721.	6.1	25
15	Influence of magnetron configurations on the structure and properties of room temperature sputtered ZnO thin films. Physica Scripta, 2021, 96, 015811.	2.5	7
16	MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor. Sensors and Actuators B: Chemical, 2020, 305, 127437.	7.8	97
17	Fabrication of highly responsive room temperature H2 sensor based on vertically aligned edge-oriented MoS2 nanostructured thin film functionalized by Pd nanoparticles. Sensors and Actuators B: Chemical, 2020, 325, 128800.	7.8	38
18	Influence of SiC thin films thickness on the electrical properties of Pd/SiC thin films for hydrogen gas sensor. Vacuum, 2020, 182, 109750.	3.5	7

#	Article	IF	Citations
19	A Highâ€Performing Asymmetric Supercapacitor of Molybdenum Nitride and Vanadium Nitride Thin Films as Binderâ€Free Electrode Grown through Reactive Sputtering. Energy Technology, 2020, 8, 2000466.	3.8	33
20	Catalyst free approach for the fabrication of CoN//Zn3N2 asymmetric configuration for highly efficient flexible supercapacitor. Applied Physics Letters, 2020, 117 , .	3.3	29
21	Tunable plasmonic properties of silver nanoparticles embedded in amorphous-carbon ultrathin films deposited by co-sputtering. AIP Conference Proceedings, 2020, , .	0.4	O
22	In situ fabrication of tugnsten disulfide on copper foam for application as electrodes in supercapacitors by reactive sputtering technique. AIP Conference Proceedings, 2020, , .	0.4	1
23	Magnetron configurations dependent surface properties of SnO2 thin films deposited by sputtering process. Vacuum, 2020, 177, 109353.	3.5	19
24	Surface modification of sputter deposited \hat{l}^3 -WO3 thin film for scaled electrochromic behaviour. Surface and Coatings Technology, 2019, 375, 708-714.	4.8	15
25	Hierarchal growth of MoS2@CNT heterostructure for all solid state symmetric supercapacitor: Insights into the surface science and storage mechanism. Electrochimica Acta, 2019, 324, 134767.	5.2	96
26	Ellipsometric Investigation of Room Temperature Grown Highly-Oriented Anatase TiO2 Thin Films. Journal of Electronic Materials, 2019, 48, 1223-1234.	2.2	13
27	Effect of annealing parameters on optoelectronic properties of highly ordered ZnO thin films. Materials Science in Semiconductor Processing, 2019, 100, 200-213.	4.0	64
28	Optical and electrical properties of highly ordered α-, γ- and α + γ-MnS films deposited by reactive sputtering technique. Journal of Applied Physics, 2019, 126, .	2.5	12
29	Development of Pd-Pt functionalized high performance H2 gas sensor based on silicon carbide coated porous silicon for extreme environment applications. Sensors and Actuators B: Chemical, 2019, 283, 373-383.	7.8	62
30	Understanding the mechanism of adsorption of CTAB and polylysine on silver nanoparticles and detection of Hg2+: Experimental and DFT study. Journal of Molecular Liquids, 2019, 276, 910-918.	4.9	14
31	Fabrication of porous silicon filled Pd/SiC nanocauliflower thin films for high performance H2 gas sensor. Sensors and Actuators B: Chemical, 2018, 264, 10-19.	7.8	52
32	Structural and optical characteristics of <i>in-situ</i> sputtered highly oriented 15R-SiC thin films on different substrates. Journal of Applied Physics, 2018, 123, .	2.5	22
33	Phase-dependent structural and electrochemical properties of single crystalline MnS thin films deposited by DC reactive sputtering. Journal of Applied Physics, 2018, 124, .	2.5	34
34	Hydrogenation and Dehydrogenation of Hydrophobic Pd-Capped Vertically Aligned Porous Ti Nanoflake Thin Film. Jom, 2018, 70, 2179-2184.	1.9	14
35	One step sputtered grown MoS2 nanoworms binder free electrodes for high performance supercapacitor application. International Journal of Hydrogen Energy, 2018, 43, 11141-11149.	7.1	66
36	The Role of the Substrate on Photophysical Properties of Highly Ordered 15R-SiC Thin Films. Journal of Electronic Materials, 2018, 47, 5259-5268.	2.2	9

#	Article	IF	Citations
37	Tunable optical properties of plasmonic Au/Al ₂ O ₃ nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 740.	1.5	23
38	Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application. Sensors and Actuators B: Chemical, 2017, 242, 694-699.	7.8	44
39	Porous silicon filled with Pd/WO ₃ –ZnO composite thin film for enhanced H ₂ gas-sensing performance. RSC Advances, 2017, 7, 39666-39675.	3.6	40
40	Enhanced Optical Absorption of Ti Thin Film: Coupled Effect of Deposition and Post-deposition Temperatures. Jom, 2017, 69, 2383-2389.	1.9	12
41	Optical and other physical properties of hydrophobic ZnO thin films prepared by dc magnetron sputtering at room temperature. Journal of Applied Physics, 2017, 122, .	2.5	43
42	Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sensors and Actuators B: Chemical, 2016, 234, 8-14.	7.8	114
43	Highly sensitive and selective CO gas sensor based on a hydrophobic SnO ₂ /CuO bilayer. RSC Advances, 2016, 6, 47178-47184.	3.6	79
44	Performance of High Energy Density Symmetric Supercapacitor Based on Sputtered MnO ₂ Nanorods. ChemistrySelect, 2016, 1, 3885-3891.	1.5	57
45	Fast response ammonia sensors based on TiO ₂ and NiO nanostructured bilayer thin films. RSC Advances, 2016, 6, 77636-77643.	3.6	62
46	A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing. Sensors and Actuators B: Chemical, 2016, 236, 16-26.	7.8	78
47	Determination of optical constants including surface characteristics of optically thick nanostructured Ti films: analyzed by spectroscopic ellipsometry. Applied Optics, 2016, 55, 8368.	2.1	25
48	Enhanced Optical Absorbance Of Hydrophobic Ti Thin Film: Role Of Surface Roughness. Advanced Materials Letters, 2016, 7, 485-490.	0.6	17
49	A room temperature hydrogen sensor based on Pd–Mg alloy and multilayers prepared by magnetron sputtering. International Journal of Hydrogen Energy, 2015, 40, 15549-15555.	7.1	40
50	Fast and reversible hydrogen sensing properties of Pd/Mg thin film modified by hydrophobic porous silicon substrate. Sensors and Actuators B: Chemical, 2015, 213, 252-260.	7.8	43
51	Hydrogen absorption and optical properties of Pd/Mg thin films prepared by DC magnetron sputtering. International Journal of Hydrogen Energy, 2012, 37, 3772-3778.	7.1	30
52	Microstructural characterizations of magnetron sputtered Ti films on glass substrate. Journal of Materials Processing Technology, 2009, 209, 3444-3451.	6.3	107
53	Structural and optical characterization of ZnO nanocrystalline films deposited by sputtering. Optical Materials, 2007, 29, 995-998.	3.6	133
54	Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films. Materials Letters, 2007, 61, 2050-2053.	2.6	52