
Emiliano P Ricci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080142/publications.pdf Version: 2024-02-01

EMILIANO P RICCI

#	Article	IF	CITATIONS
1	Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016, 351, 391-396.	12.6	992
2	A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes. Science, 2013, 341, 789-792.	12.6	925
3	A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell, 2016, 165, 1672-1685.	28.9	399
4	Post-transcriptional regulation of gene expression in innate immunity. Nature Reviews Immunology, 2014, 14, 361-376.	22.7	301
5	Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nature Communications, 2019, 10, 45.	12.8	195
6	Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature, 2021, 590, 660-665.	27.8	175
7	Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Research, 2015, 25, 1610-1621.	5.5	157
8	Structural and functional diversity of viral IRESes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 542-557.	1.9	152
9	System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Molecular Cell, 2019, 74, 196-211.e11.	9.7	137
10	Staufen1 senses overall transcript secondary structure to regulate translation. Nature Structural and Molecular Biology, 2014, 21, 26-35.	8.2	117
11	The long noncoding RNA CHROME regulates cholesterol homeostasis in primates. Nature Metabolism, 2019, 1, 98-110.	11.9	104
12	A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair. Genes and Development, 2019, 33, 1175-1190.	5.9	78
13	RIPiT-Seq: A high-throughput approach for footprinting RNA:protein complexes. Methods, 2014, 65, 320-332.	3.8	68
14	Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nature Communications, 2021, 12, 1461.	12.8	65
15	Staphylococcus aureus Small Colony Variants (SCVs): News From a Chronic Prosthetic Joint Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 363.	3.9	63
16	Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucleic Acids Research, 2007, 35, e121-e121.	14.5	60
17	An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments. Nucleic Acids Research, 2015, 43, e2-e2.	14.5	57
18	miRNA repression of translation inÂvitro takes place during 43S ribosomal scanning. Nucleic Acids Research, 2013, 41, 586-598.	14.5	53

EMILIANO P RICCI

#	Article	IF	CITATIONS
19	The Andes Hantavirus NSs Protein Is Expressed from the Viral Small mRNA by a Leaky Scanning Mechanism. Journal of Virology, 2012, 86, 2176-2187.	3.4	48
20	The long non-coding RNA LUCAT1 is a negative feedback regulator of interferon responses in humans. Nature Communications, 2020, 11, 6348.	12.8	48
21	Lentiviral RNAs can use different mechanisms for translation initiation. Biochemical Society Transactions, 2008, 36, 690-693.	3.4	47
22	When mRNA translation meets decay. Biochemical Society Transactions, 2017, 45, 339-351.	3.4	41
23	Ribosome dynamics and <scp>mRNA</scp> turnover, a complex relationship under constant cellular scrutiny. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1658.	6.4	41
24	Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation. Nucleic Acids Research, 2012, 40, 2653-2667.	14.5	38
25	Activation of a microRNA response in trans reveals a new role for poly(A) in translational repression. Nucleic Acids Research, 2011, 39, 5215-5231.	14.5	29
26	Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nature Cell Biology, 2020, 22, 200-212.	10.3	29
27	Translation of intronless RNAs is strongly stimulated by the Epstein–Barr virus mRNA export factor EB2. Nucleic Acids Research, 2009, 37, 4932-4943.	14.5	28
28	Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription. EMBO Journal, 2019, 38, e101955.	7.8	25
29	Baboon Envelope Pseudotyped "Nanoblades―Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34+ Cells and Knock-in of AAV6-Encoded Donor DNA in CD34+ Cells. Frontiers in Genome Editing, 2021, 3, 604371.	5.2	25
30	In vitro expression of the HIV-2 genomic RNA is controlled by three distinct internal ribosome entry segments that are regulated by the HIV protease and the Gag polyprotein. Rna, 2008, 14, 1443-1455.	3.5	22
31	PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice. PLoS Pathogens, 2018, 14, e1006933.	4.7	22
32	The 3′ Untranslated Region of the Andes Hantavirus Small mRNA Functionally Replaces the Poly(A) Tail and Stimulates Cap-Dependent Translation Initiation from the Viral mRNA. Journal of Virology, 2010, 84, 10420-10424.	3.4	15
33	HIV-2 genomic RNA accumulates in stress granules in the absence of active translation. Nucleic Acids Research, 2014, 42, 12861-12875.	14.5	15
34	Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nature Communications, 2021, 12, 5970.	12.8	13
35	microRNAs stimulate translation initiation mediated by HCV-like IRESes. Nucleic Acids Research, 2017, 45, gkw1345.	14.5	12
36	Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Frontiers in Immunology, 2021, 12, 796012.	4.8	10

#	Article	IF	CITATIONS
37	Pseudomonas aeruginosa cleaves the decoding center of Caenorhabditis elegans ribosomes. PLoS Biology, 2020, 18, e3000969.	5.6	9
38	Delivery of the Cas9/sgRNA Ribonucleoprotein Complex in Immortalized and Primary Cells via Virus-like Particles ("Nanoblades"). Journal of Visualized Experiments, 2021, , .	0.3	4