
Andrea V Gamarnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7080057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dengue Virus Capsid-Protein Dynamics in Live Infected Cells Studied by Pair Correlation. Methods in Molecular Biology, 2022, 2409, 99-117.	0.9	1
2	Longitudinal Study after Sputnik V Vaccination Shows Durable SARS-CoV-2 Neutralizing Antibodies and Reduced Viral Variant Escape to Neutralization over Time. MBio, 2022, 13, e0344221.	4.1	19
3	Antibody durability at 1 year after Sputnik V vaccination. Lancet Infectious Diseases, The, 2022, 22, 589-590.	9.1	10
4	Heterologous booster response after inactivated virus BBIBP-CorV vaccination in older people. Lancet Infectious Diseases, The, 2022, 22, 1118-1119.	9.1	10
5	Emergency response for evaluating SARS-CoV-2 immune status, seroprevalence and convalescent plasma in Argentina. PLoS Pathogens, 2021, 17, e1009161.	4.7	62
6	Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .	4.1	64
7	Sputnik V vaccine elicits seroconversion and neutralizing capacity to SARS-CoV-2 after a single dose. Cell Reports Medicine, 2021, 2, 100359.	6.5	62
8	Dengue and Zika virus capsid proteins bind to membranes and self-assemble into liquid droplets with nucleic acids. Journal of Biological Chemistry, 2021, 297, 101059.	3.4	20
9	In vivo pair correlation microscopy reveals dengue virus capsid protein nucleocytoplasmic bidirectional movement in mammalian infected cells. Scientific Reports, 2021, 11, 24415.	3.3	5
10	Dengue virus targets RBM10 deregulating host cell splicing and innate immune response. Nucleic Acids Research, 2020, 48, 6824-6838.	14.5	37
11	Dengue Virus Capsid Protein Dynamics Reveals Spatially Heterogeneous Motion in Live-Infected-Cells. Scientific Reports, 2020, 10, 8751.	3.3	9
12	Zika Virus Subgenomic Flavivirus RNA Generation Requires Cooperativity between Duplicated RNA Structures That Are Essential for Productive Infection in Human Cells. Journal of Virology, 2020, 94, .	3.4	27
13	De novo design approaches targeting an envelope protein pocket to identify small molecules against dengue virus. European Journal of Medicinal Chemistry, 2019, 182, 111628.	5.5	20
14	Thermodynamic study of the effect of ions on the interaction between dengue virus NS3 helicase and single stranded RNA. Scientific Reports, 2019, 9, 10569.	3.3	4
15	RNA Structure Duplication in the Dengue Virus 3′ UTR: Redundancy or Host Specificity?. MBio, 2019, 10, .	4.1	51
16	Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 2018, 175, 1931-1945.e18.	28.9	252
17	Discovery of novel dengue virus entry inhibitors via a structure-based approach. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3851-3855.	2.2	23
18	Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS Pathogens, 2017, 13, e1006265.	4.7	95

ANDREA V GAMARNIK

#	Article	IF	CITATIONS
19	The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing. PLoS Pathogens, 2016, 12, e1005841.	4.7	176
20	Properties and Functions of the Dengue Virus Capsid Protein. Annual Review of Virology, 2016, 3, 263-281.	6.7	119
21	Dengue Virus Genome Uncoating Requires Ubiquitination. MBio, 2016, 7, .	4.1	85
22	Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity, 2016, 44, 46-58.	14.3	110
23	A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production. Journal of Virology, 2016, 90, 5451-5461.	3.4	30
24	RNA Structure Duplications and Flavivirus Host Adaptation. Trends in Microbiology, 2016, 24, 270-283.	7.7	141
25	Dengue Virus Uses a Nonâ€Canonical Function of the Host <scp>GBF1</scp> â€Arfâ€ <scp>COPI</scp> System for Capsid Protein Accumulation on Lipid Droplets. Traffic, 2015, 16, 962-977.	2.7	61
26	Overlapping Local and Long-Range RNA-RNA Interactions Modulate Dengue Virus Genome Cyclization and Replication. Journal of Virology, 2015, 89, 3430-3437.	3.4	78
27	Dengue Virus RNA Structure Specialization Facilitates Host Adaptation. PLoS Pathogens, 2015, 11, e1004604.	4.7	138
28	Monomeric nature of dengue virus NS3 helicase and thermodynamic analysis of the interaction with single-stranded RNA. Nucleic Acids Research, 2014, 42, 11668-11686.	14.5	10
29	Differential RNA Sequence Requirement for Dengue Virus Replication in Mosquito and Mammalian Cells. Journal of Virology, 2013, 87, 9365-9372.	3.4	46
30	Steady-State NTPase Activity of Dengue Virus NS3: Number of Catalytic Sites, Nucleotide Specificity and Activation by ssRNA. PLoS ONE, 2013, 8, e58508.	2.5	19
31	Uncoupling <i>cis</i> -Acting RNA Elements from Coding Sequences Revealed a Requirement of the N-Terminal Region of Dengue Virus Capsid Protein in Virus Particle Formation. Journal of Virology, 2012, 86, 1046-1058.	3.4	57
32	Novel ATP-Independent RNA Annealing Activity of the Dengue Virus NS3 Helicase. PLoS ONE, 2012, 7, e36244.	2.5	60
33	An Analogue of the Antibiotic Teicoplanin Prevents Flavivirus Entry In Vitro. PLoS ONE, 2012, 7, e37244.	2.5	43
34	Functional RNA Elements in the Dengue Virus Genome. Viruses, 2011, 3, 1739-1756.	3.3	193
35	Dynamic RNA structures in the dengue virus genome. RNA Biology, 2011, 8, 249-257.	3.1	62
36	The F1 Motif of Dengue Virus Polymerase NS5 Is Involved in Promoter-Dependent RNA Synthesis. Journal of Virology, 2011, 85, 5745-5756.	3.4	65

ANDREA V GAMARNIK

#	Article	IF	CITATIONS
37	RNA Sequences and Structures Required for the Recruitment and Activity of the Dengue Virus Polymerase. Journal of Biological Chemistry, 2011, 286, 6929-6939.	3.4	98
38	A Derivate of the Antibiotic Doxorubicin Is a Selective Inhibitor of Dengue and Yellow Fever Virus Replication <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 5269-5280.	3.2	72
39	A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. Rna, 2010, 16, 2325-2335.	3.5	108
40	Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation. PLoS Pathogens, 2009, 5, e1000632.	4.7	484
41	Structural and Functional Studies of the Promoter Element for Dengue Virus RNA Replication. Journal of Virology, 2009, 83, 993-1008.	3.4	141
42	Genome cyclization as strategy for flavivirus RNA replication. Virus Research, 2009, 139, 230-239.	2.2	172
43	Flaviviruses. , 2009, , 41-60.		2
44	Functional analysis of dengue virus cyclization sequences located at the 5′ and 3′UTRs. Virology, 2008, 375, 223-235.	2.4	125
45	Structural and Functional Analysis of Dengue Virus RNA. Novartis Foundation Symposium, 2008, , 120-135.	1.1	25
46	Essential Role of Dengue Virus Envelope Protein N Glycosylation at Asparagine-67 during Viral Propagation. Journal of Virology, 2007, 81, 7136-7148.	3.4	170
47	The active essential CFNS3d protein complex FEBS Journal, 2006, 273, 3650-3662.	4.7	16
48	A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes and Development, 2006, 20, 2238-2249.	5.9	321
49	Structural and functional analysis of dengue virus RNA. Novartis Foundation Symposium, 2006, 277, 120-32; discussion 132-5, 251-3.	1.1	15
50	Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology, 2005, 339, 200-212.	2.4	267
51	Long-Range RNA-RNA Interactions Circularize the Dengue Virus Genome. Journal of Virology, 2005, 79, 6631-6643.	3.4	327
52	Characterization of internal ribosomal entry sites of Triatoma virus. Journal of General Virology, 2005, 86, 2275-2280.	2.9	21
53	Amino Acid Substitutions at Position 190 of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Increase Susceptibility to Delavirdine and Impair Virus Replication. Journal of Virology, 2003, 77, 1512-1523.	3.4	102
54	Nelfinavir-Resistant, Amprenavir-Hypersusceptible Strains of Human Immunodeficiency Virus Type 1 Carrying an N88S Mutation in Protease Have Reduced Infectivity, Reduced Replication Capacity, and Reduced Fitness and Process the Gag Polyprotein Precursor Aberrantly. Journal of Virology, 2002, 76, 8659-8666.	3.4	67

#	Article	IF	CITATIONS
55	Translation and Replication of Human Rhinovirus Type 14 and Mengovirus in Xenopus Oocytes. Journal of Virology, 2000, 74, 11983-11987.	3.4	26
56	Interactions of Viral Protein 3CD and Poly(rC) Binding Protein with the 5′ Untranslated Region of the Poliovirus Genome. Journal of Virology, 2000, 74, 2219-2226.	3.4	211
57	The N-terminal K Homology Domain of the Poly(rC)-binding Protein Is a Major Determinant for Binding to the Poliovirus 5â€2-Untranslated Region and Acts as an Inhibitor of Viral Translation. Journal of Biological Chemistry, 1999, 274, 38163-38170.	3.4	64
58	Intracellular determinants of picornavirus replication. Trends in Microbiology, 1999, 7, 76-82.	7.7	85
59	Cadaverine, an Essential Diamine for the Normal Root Development of Germinating Soybean (Glycine) Tj ETQq1	1 0,78431 4.8	4 rgBT /Overle