Friedrich Aumayr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7079450/publications.pdf

Version: 2024-02-01

53939 7,710 337 47 citations h-index papers

g-index 339 339 339 3241 docs citations times ranked citing authors all docs

100535

70

#	Article	IF	CITATIONS
1	Analytical model for the sputtering of rough surfaces. Surfaces and Interfaces, 2022, 30, 101924.	1.5	13
2	Developing a physics understanding of the quasi-continuous exhaust regime: pedestal profile and ballooning stability analysis. Nuclear Fusion, 2022, 62, 086004.	1.6	8
3	Graphical user interface for SDTrimSP to simulate sputtering, ion implantation and the dynamic effects of ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2022, 522, 47-53.	0.6	19
4	Simultaneously measured direct and indirect thrust of a FEEP thruster using novel thrust balance and beam diagnostics. Acta Astronautica, 2022, 197, 107-114.	1.7	4
5	Comparative study regarding the sputtering yield of nanocolumnar tungsten surfaces under <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Ar</mml:mi><td>0.9 Irow><mm< td=""><td>nl:<mark>4</mark>n>+</td></mm<></td></mml:mrow></mml:msup></mml:math>	0.9 Irow> <mm< td=""><td>nl:<mark>4</mark>n>+</td></mm<>	nl: <mark>4</mark> n>+
6	Nano-hillock formation on CaF2 due to individual slow Au-cluster impacts. Nanotechnology, 2021, 32, 355701.	1.3	3
7	Fluorination of graphene leads to susceptibility for nanopore formation by highly charged ion impact. Physical Review Materials, 2021, 5, .	0.9	7
8	Combination of in-situ ion beam analysis and thermal desorption spectroscopy for studying deuterium implanted in tungsten. Physica Scripta, 2021, 96, 124004.	1.2	6
9	Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid. Communications Physics, 2021, 4, .	2.0	13
10	Creation of Lunar and Hermean analogue mineral powder samples for solar wind irradiation experiments and mid-infrared spectra analysis. Icarus, 2021, 365, 114492.	1.1	8
11	Sputter yields of rough surfaces: Importance of the mean surface inclination angle from nano- to microscopic rough regimes. Applied Surface Science, 2021, 570, 151204.	3.1	31
12	IFM Nano Thruster performance studied by experiments and numerical simulations. Journal Physics D: Applied Physics, 2021, 54, 095203.	1.3	11
13	Angle-dependent charge exchange and energy loss of slow highly charged ions in freestanding graphene. Physical Review A, 2021, 104, .	1.0	5
14	Formation of beryllium-hydrogen ions in chemical sputtering from 20 to 420eV. Nuclear Materials and Energy, 2020, 22, 100722.	0.6	3
15	The role of contaminations in ion beam spectroscopy with freestanding 2D materials: A study on thermal treatment. Journal of Chemical Physics, 2020, 153, 014702.	1.2	11
16	The role of contaminations on the interaction of highly charged ions with 2D materials. Journal of Physics: Conference Series, 2020, 1412, 202011.	0.3	1
17	Atomic-Scale Carving of Nanopores into a van der Waals Heterostructure with Slow Highly Charged lons. ACS Nano, 2020, 14, 10536-10543.	7.3	22
18	Energy deposition of highly charged ions transmitted through single layer MoS2. Journal of Physics: Conference Series, 2020, 1412, 162018.	0.3	0

#	Article	IF	CITATIONS
19	Highly charged ion impact on graphene leading to the emission of low energy electrons. Journal of Physics: Conference Series, 2020, 1412, 202012.	0.3	0
20	A high temperature dual-mode quartz crystal microbalance technique for erosion and thermal desorption spectroscopy measurements. Review of Scientific Instruments, 2020, 91, 125104.	0.6	9
21	Solar wind Helium ion interaction with Mg and Fe rich pyroxene as Mercury surface analogue. Nuclear Instruments & Methods in Physics Research B, 2020, 480, 10-15.	0.6	9
22	Solar wind sputtering of lunar analogue material. Journal of Physics: Conference Series, 2020, 1412, 202006.	0.3	0
23	Dynamic Potential Sputtering of Lunar Analog Material by Solar Wind Ions. Astrophysical Journal, 2020, 891, 100.	1.6	22
24	Erosion of iron-tungsten model films by deuterium ion irradiation: a benchmark for TRI3DYN. Physica Scripta, 2020, T171, 014021.	1.2	8
25	Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>n<mark>1.1</mark><td>l:msub></td></td></mml:mn></mml:msub></mml:math>	n <mark>1.1</mark> <td>l:msub></td>	l:msub>
26	Sputtering of nanostructured tungsten and comparison to modelling with TRI3DYN. Journal of Nuclear Materials, 2020, 532, 152019.	1.3	23
27	Experimental Insights Into Space Weathering of Phobos: Laboratory Investigation of Sputtering by Atomic and Molecular Planetary Ions. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006583.	1.5	15
28	Highlights of the Science and Life of Peter Varga (1946—2018). E-Journal of Surface Science and Nanotechnology, 2020, 18, 8-11.	0.1	0
29	Charge-Exchange-Driven Low-Energy Electron Splash Induced by Heavy Ion Impact on Condensed Matter. Journal of Physical Chemistry Letters, 2019, 10, 4805-4811.	2.1	17
30	Roadmap on photonic, electronic and atomic collision physics: III. Heavy particles: with zero to relativistic speeds. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171003.	0.6	22
31	Roadmap on photonic, electronic and atomic collision physics: I. Light–matter interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171001.	0.6	52
32	Roadmap on photonic, electronic and atomic collision physics: II. Electron and antimatter interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 171002.	0.6	22
33	Femtosecond laser induced periodic surface structures for the enhancement of field emission properties of tungsten. Optical Materials Express, 2019, 9, 3183.	1.6	11
34	The role of radiative de-excitation in the neutralization process of highly charged ions interacting with a single layer of graphene. Nuclear Instruments & Methods in Physics Research B, 2018, 422, 63-67.	0.6	4
35	Divertor, scrape-off layer and pedestal particle dynamics in the ELM cycle on ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2018, 60, 025002.	0.9	12
36	Plasma shaping and its impact on the pedestal of ASDEX Upgrade: edge stability and inter-ELM dynamics at varied triangularity. Nuclear Fusion, 2018, 58, 046008.	1.6	12

3

#	Article	IF	CITATIONS
37	Parameter dependences of small edge localized modes (ELMs). Nuclear Fusion, 2018, 58, 112001.	1.6	47
38	High resolution AFM studies of irradiated micaâ€"following the traces of swift heavy ions under grazing incidence. Journal of Physics Condensed Matter, 2018, 30, 285001.	0.7	4
39	Fluence dependent changes of surface morphology and sputtering yield of iron: Comparison of experiments with SDTrimSP-2D. Nuclear Instruments & Methods in Physics Research B, 2018, 430, 42-46.	0.6	20
40	Neutralization Dynamics of Slow Highly Charged Ions in 2D Materials. Applied Sciences (Switzerland), 2018, 8, 1050.	1.3	8
41	A versatile ion beam spectrometer for studies of ion interaction with 2D materials. Review of Scientific Instruments, 2018, 89, 085101.	0.6	14
42	Solar wind sputtering of wollastonite as a lunar analogue material – Comparisons between experiments and simulations. Icarus, 2018, 314, 98-105.	1.1	30
43	Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation. Physical Review B, 2017, 95, .	1.1	34
44	An attempt to apply the inelastic thermal spike model to surface modifications of CaF ₂ induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material. Journal of Physics Condensed Matter, 2017, 29, 095001.	0.7	23
45	Sputtering measurements using a quartz crystal microbalance as a catcher. Nuclear Instruments & Methods in Physics Research B, 2017, 406, 533-537.	0.6	8
46	Charge equilibration times for slow highly charged ions in single layer graphene. Journal of Physics: Conference Series, 2017, 875, 112001.	0.3	0
47	Interatomic Coulombic Decay: The Mechanism for Rapid Deexcitation of Hollow Atoms. Physical Review Letters, 2017, 119, 103401.	2.9	69
48	Erosion of Fe-W model system under normal and oblige D ion irradiation. Nuclear Materials and Energy, 2017, 12, 468-471.	0.6	9
49	Pulsed Photoelectric Coherent Manipulation and Detection of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">N</mml:mi><mml:mtext>â^3</mml:mtext><mml:mi>V</mml:mi></mml:mrow></mml:math> <td>1.5</td> <td>27</td>	1.5	27
50	Publisher's Note: Pulsed Photoelectric Coherent Manipulation and Detection of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">N</mml:mi><mml:mtext>â^3</mml:mtext><mml:mi>V</mml:mi></mml:mrow></mml:math> 7, 044032 (2017)]. Physical Review Applied, 2017, 7, .	1.5 1>	5
51	Pedestal structure and inter-ELM evolution for different main ion species in ASDEX Upgrade. Physics of Plasmas, 2017, 24, .	0.7	27
52	Plasmaâ€"wall interaction studies within the EUROfusion consortium: progress on plasma-facing components development and qualification. Nuclear Fusion, 2017, 57, 116041.	1.6	75
53	Ultrafast electronic response of graphene to a strong and localized electric field. Nature Communications, 2016, 7, 13948.	5.8	125
54	Large-scale quantum technology based on luminescent centers in crystals. , 2016, , .		1

#	Article	IF	Citations
55	A setup for transmission measurements of low energy multiply charged ions through free-standing few atomic layer films. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 119-122.	0.6	1
56	Swift heavy ion irradiation of CaF ₂ – from grooves to hillocks in a single ion track. Journal of Physics Condensed Matter, 2016, 28, 405001.	0.7	17
57	Transient effects during erosion of WN by deuterium ions studied with the quartz crystal microbalance technique. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 82-85.	0.6	8
58	Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions. Physical Review Letters, 2016, 117, 126101.	2.9	29
59	Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions. Physical Review A, 2016, 93, .	1.0	20
60	High frequency magnetic fluctuations correlated with the inter-ELM pedestal evolution in ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2016, 58, 065005.	0.9	57
61	Elementary processes with atoms and molecules in isolated and aggregated states. European Physical Journal D, 2015, 69, 1.	0.6	O
62	Hillock formation on CaF ₂ , A1 ₂ O ₃ , c-SiO ₂ and MgO single crystal surfaces by ion impact - From potential energy deposition to electronic energy loss. Journal of Physics: Conference Series, 2015, 635, 032005.	0.3	0
63	Interaction of multiply charged ions with single layer graphene Part I: charge exchange and energy loss. Journal of Physics: Conference Series, 2015, 635, 032002.	0.3	0
64	Interaction of highly charged ions with carbon nano membranes. Journal of Physics: Conference Series, 2015, 635, 012027.	0.3	1
65	Threshold and Efficiency for Perforation of 1nm Thick Carbon Nano-membranes with Slow Highly Charged Ions. Journal of Physics: Conference Series, 2015, 635, 032011.	0.3	O
66	Experimental and theoretical studies of 4.5-keV Ar7+ guided through a conical glass macrocapillary. Journal of Physics: Conference Series, 2015, 635, 032015.	0.3	0
67	Studies of surface nanostructure formation due to swift heavy ion irradiation under grazing incidence. Journal of Physics: Conference Series, 2015, 635, 032001.	0.3	0
68	Interaction of multiply charged ions with single layer graphene Part II: electron emission. Journal of Physics: Conference Series, 2015, 635, 032003.	0.3	0
69	Threshold and efficiency for perforation of $1\mathrm{nm}$ thick carbon nanomembranes with slow highly charged ions. 2D Materials, 2015, 2, 035009.	2.0	21
70	Conceptual design and sample preparation of electrode covered single glass macro-capillaries for studying the effect of an external electric field on particle guiding. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 324-327.	0.6	2
71	Highly charged ion induced nanostructures at surfaces by strong electronic excitations. Progress in Surface Science, 2015, 90, 377-395.	3.8	31
72	Role of electron temperature in the particle transport in the pedestal during pedestal evolution. Journal of Nuclear Materials, 2015, 463, 1091-1095.	1.3	1

#	Article	IF	Citations
73	Experiments and simulations of 4.5-keV <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Ar</mml:mi><th>nrdvØ> < mr</th><th>nl:nsrow><m< th=""></m<></th></mml:mrow></mml:msup></mml:math>	nr dv Ø> < mr	nl :ns row> <m< th=""></m<>
74	Plasma–wall interactions with nitrogen seeding in all-metal fusion devices: Formation of nitrides and ammonia. Fusion Engineering and Design, 2015, 98-99, 1371-1374.	1.0	33
75	Nano-structuring of CaF2 surfaces by slow highly charged ions: simulation and experiment. Journal of Physics: Conference Series, 2014, 488, 132015.	0.3	1
76	Interaction of nitrogen ions with beryllium surfaces. Nuclear Instruments & Methods in Physics Research B, 2014, 340, 34-38.	0.6	5
77	Temperature control of ion guiding through tapered capillaries. Nuclear Instruments & Methods in Physics Research B, 2014, 340, 1-4.	0.6	13
78	Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold. Physical Review A, 2014, 90, .	1.0	8
79	Characterization of the Li-BES at ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2014, 56, 025008.	0.9	70
80	Charge Exchange and Energy Loss of Slow Highly Charged Ions in 1Ânm Thick Carbon Nanomembranes. Physical Review Letters, 2014, 112, 153201.	2.9	62
81	Interaction between seeding gas ions and nitrogen saturated tungsten surfaces. International Journal of Mass Spectrometry, 2014, 365-366, 64-67.	0.7	12
82	Surface modifications of BaF2 and CaF2 single crystals by slow highly charged ions. Applied Surface Science, 2014, 310, 169-173.	3.1	11
83	Nanostructuring CaF2 surfaces with slow highly charged ions. Journal of Physics: Conference Series, 2014, 488, 012002.	0.3	3
84	The effect of temperature on ion guiding through tapered glass capillaries. Journal of Physics: Conference Series, 2014, 488, 132013.	0.3	2
85	Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2. Scientific Reports, 2014, 4, 5742.	1.6	28
86	Fabrication of nanopores in $1\hat{a}$ e‰nm thick carbon nanomembranes with slow highly charged ions. Applied Physics Letters, 2013, 102, .	1.5	49
87	Interaction of charged particles with insulating capillary targets – The guiding effect. Progress in Surface Science, 2013, 88, 237-278.	3.8	70
88	Highly charged ion impact induced nanodefects in diamond. Nuclear Instruments & Methods in Physics Research B, 2013, 314, 135-139.	0.6	4
89	Novel aspects on the irradiation of HOPG surfaces with slow highly charged ions. Nuclear Instruments & Methods in Physics Research B, 2013, 315, 252-256.	0.6	14
90	An ultra-compact setup for measuring ion-induced electron emission statistics. Nuclear Instruments & Methods in Physics Research B, 2013, 317, 44-47.	0.6	1

#	Article	IF	Citations
91	Effect of chemical etching on poly(methyl methacrylate) irradiated with slow highly charged ions. Physica Scripta, 2013, T156, 014065.	1.2	O
92	Particle transport analysis of the density build-up after the L–H transition in ASDEX Upgrade. Nuclear Fusion, 2013, 53, 093020.	1.6	27
93	Pit formation on poly(methyl methacrylate) due to ablation induced by individual slow highly charged ion impact. Europhysics Letters, 2012, 97, 13001.	0.7	26
94	Atomic-orbital close-coupling calculations for collisions involving fusion relevant highly charged impurity ions using very large basis sets., 2012,,.		0
95	Improved chopping of a lithium beam for plasma edge diagnostic at ASDEX Upgrade. Review of Scientific Instruments, 2012, 83, 023501.	0.6	39
96	Nano-craters due to impact of individual highly charged ions on surfaces and thin films. Journal of Physics: Conference Series, 2012, 388, 132028.	0.3	0
97	Kinetic-energy-driven enhancement of secondary-electron yields of highly charged ions impinging on thin films of C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>60</mml:mn></mml:msub></mml:math> on Au. Physical Review A. 2012. 86	1.0	1
98	Temperature control of ion guiding through insulating capillaries. Physical Review A, 2012, 86, .	1.0	52
99	Electron density evolution after L–H transitions and the L–H/H–L cycle in ASDEX Upgrade. Nuclear Fusion, 2012, 52, 114026.	1.6	13
100	Recent progress in understanding the L–H transition physics from ASDEX Upgrade. Plasma Physics and Controlled Fusion, 2012, 54, 124002.	0.9	7
101	Fast computation of large-scale close-coupling systems on the example of N7+â^ H collisions. Journal of Physics: Conference Series, 2012, 388, 082055.	0.3	O
102	Atomic-orbital close-coupling calculations of charge exchange and ionisation in collisions of H(1s) and highly charged neon and argon ions. Journal of Physics: Conference Series, 2012, 388, 082056.	0.3	0
103	The effect of temperature on guiding of slow highly charged ions through a mesoscopic glass capillary. Journal of Physics: Conference Series, 2012, 388, 132031.	0.3	O
104	Contribution of Surface Plasmon Decay to Secondary Electron Emission from an Al Surface. Journal of Physics: Conference Series, 2012, 388, 022091.	0.3	1
105	Charge exchange and ionization in N ^{7 +} $\hat{a}\in$, N ^{6 +} $\hat{a}\in$, C ^{6 +} $\hat{a}\in$ H(<i>n</i>)= Molecular and Optical Physics, 2012, 45, 065203.) Tj ETQq1 0.6	. 1 0.78431 22
106	Phase Diagram for Nanostructuring <pre>cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > <pre>cmml:msub > <pre>cmml:mi > CaF < /pre>/mml:mn > 2 < /pre>/mml:mn > <pre>c/mml:msub > < /pre>/mml:math > Surfaces by Slow Highly Charged Ions. Physical Review Letters, 2012, 109, 117602.</pre></pre></pre></pre>	2.9	42
107	Transient effects during sputtering of a-C:H surfaces by nitrogen ions. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 20-24.	0.6	2
108	Sample holder for studying temperature dependent particle guiding. Nuclear Instruments & Methods in Physics Research B, 2012, 279, 182-185.	0.6	7

#	Article	IF	CITATIONS
109	Sputtering of tungsten by N ⁺ and N ₂ ⁺ ions: investigations of molecular effects. Physica Scripta, 2011, T145, 014017.	1.2	19
110	Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions. Journal of Physics Condensed Matter, 2011, 23, 393001.	0.7	157
111	Guiding Of Slow Highly Charged Ions Through A Single Mesoscopic Glass Capillary. , 2011, , .		3
112	Fast computation of close-coupling exchange integrals using polynomials in a tree representation. Computer Physics Communications, 2011, 182, 775-778.	3.0	2
113	Surface nanostructuring of SrTiO3 single crystals by slow highly charged ions and swift heavy ions. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1234-1237.	0.6	27
114	Using a current method for measuring ion-induced electron emission from LiF. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 964-967.	0.6	0
115	Electron emission yields from boron-like Ar ions impinging on Au(100). Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1203-1207.	0.6	5
116	Highly-charged-ion-induced electron emission from C60thin films. Physical Review A, 2011, 84, .	1.0	6
117	Contribution of surface plasmon decay to secondary electron emission from an Al surface. Applied Physics Letters, 2011, 99, 184102.	1.5	23
118	Atomic-Orbital Close-Coupling Calculations Of Electron Capture From Hydrogen Atoms Into Highly Excited Rydberg States Of Multiply Charged Ions. , 2011, , .		0
119	Nano-structure formation due to impact of highly charged ions on HOPG. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2897-2900.	0.6	21
120	A deceleration system at the Heidelberg EBIT providing very slow highly charged ions for surface nanostructuring. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2972-2976.	0.6	8
121	Nanostructure formation due to impact of highly charged ions on mica. Vacuum, 2010, 84, 1062-1065.	1.6	33
122	Pyramidal pits created by single highly charged ions in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mtext>BaF</mml:mtext></mml:mrow><mml:mn>crystals. Physical Review B, 2010, 82, .</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	2 ^{1,1} 2 <td>ın ²⁹/mml:ms</td>	ın ²⁹ /mml:ms
123	Low-energy ion-induced electron emission in metal-insulator-metal sandwich structures. Physical Review B, 2010, 81, .	1.1	12
124	Scanning Probe Microscopy: From Living Cells to the Subatomic Range. , 2010, , 359-385.		0
125	Surface nanostructures by single highly charged ions. Journal of Physics Condensed Matter, 2009, 21, 224012.	0.7	30
126	Charge exchange in Be ⁴⁺ â€"H(<i>n</i> = 1, 2) collisions studied systematically by atomic-orbital close-coupling calculations. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 235206.	0.6	16

#	Article	IF	Citations
127	Development of an atomic force microscope closed fluid cell for tribological investigations of large samples in chemically aggressive environments. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223, 759-765.	1.0	1
128	Kinetic electron emission due to perpendicular impact of carbon ions on tungsten surfaces. Applied Surface Science, 2009, 255, 6303-6307.	3.1	2
129	xmins:xocs="nttp://www.eisevier.com/xmi/xocs/dtd" xmins:xs="nttp://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	0.6	78
130	A quartz-crystal-microbalance technique to investigate ion-induced erosion of fusion relevant surfaces. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 695-699.	0.6	17
131	Production of a microbeam of slow highly charged ions with a single microscopic glass capillary. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2277-2279.	0.6	40
132	Electron emission from tungsten induced by slow, fusion-relevant ions. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2634-2637.	0.6	5
133	Ion-induced erosion of tungsten surfaces studied by a sensitive quartz-crystal-microbalance technique. Journal of Nuclear Materials, 2009, 390-391, 1102-1105.	1.3	10
134	A sodium (Na) beam edge diagnostic. Journal of Nuclear Materials, 2009, 390-391, 1110-1113.	1.3	5
135	Nanostructures induced by highly charged ions on CaF ₂ and KBr. Journal of Physics: Conference Series, 2009, 194, 012060.	0.3	6
136	Transmission of 4.5 keV Ar9+ions through a single glass macrocapillary. Journal of Physics: Conference Series, 2009, 194, 132019.	0.3	3
137	Potential energy - induced nanostructuring of insulator surfaces by impact of slow, very highly charged ions. Journal of Physics: Conference Series, 2009, 194, 132027.	0.3	1
138	Atomic-orbital close-coupling calculations of Be ⁴⁺ + H(ls) → Be ³⁺ (nâ,,") + H ⁺ . Journal of Physics: Conference Series, 2009, 194, 082022.	0.3	0
139	Database for inelastic collisions of sodium atoms with electrons, protons, and multiply charged ions. Atomic Data and Nuclear Data Tables, 2008, 94, 981-1014.	0.9	21
140	Nano-sized surface modifications induced by the impact of slow highly charged ions – A first review. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2729-2735.	0.6	66
141	Electronic interaction of very slow light ions in Au: Electronic stopping and electron emission. Physical Review B, 2008, 78, .	1.1	55
142	Hot electrons induced by slow multiply charged ions. New Journal of Physics, 2008, 10, 073019.	1.2	12
143	Potential electron emission induced by multiply charged ions in thin film tunnel junctions. Physical Review B, 2008, 77, .	1.1	25
144	Creation of Nanohillocks on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>CaF<mml:mn>2</mml:mn></mml:msub></mml:math> Surfaces by Single Slow Highly Charged Ions. Physical Review Letters, 2008, 100, 237601.	5 2.9	122

#	Article	IF	Citations
145	Electron Emission from Insulators Irradiated by Slow Highly Charged Ions. E-Journal of Surface Science and Nanotechnology, 2008, 6, 54-59.	0.1	23
146	Compact 14.5 GHz all-permanent magnet ECRIS for experiments with slow multicharged ions. Journal of Physics: Conference Series, 2007, 58, 395-398.	0.3	31
147	Electron emission and energy loss in grazing collisions of protons with insulator surfaces. Physical Review A, 2007, 76, .	1.0	5
148	Single- and double-electron capture cross sections for slowHe2+impact onO2,H2, andD2. Physical Review A, 2007, 75, .	1.0	9
149	Algal Biophysics: Euglena Gracilis Investigated by Atomic Force Microscopy. Materials Science Forum, 2007, 555, 411-416.	0.3	1
150	Single and double electron capture by slow He2+from atoms and molecules. Journal of Physics: Conference Series, 2007, 58, 181-184.	0.3	4
151	Charging and discharging of nano-capillaries during ion-guiding of multiply charged projectiles. Journal of Physics: Conference Series, 2007, 58, 319-322.	0.3	18
152	Creation of surface nanostructures by irradiation with slow, highly charged ions. Radiation Effects and Defects in Solids, 2007, 162, 467-472.	0.4	23
153	On the nano-hillock formation induced by slow highly charged ions on insulator surfaces. Solid-State Electronics, 2007, 51, 1398-1404.	0.8	44
154	Scanning force microscopy of surface damage created by fast C60 cluster ions in CaF2 and LaF3 single crystals. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 313-318.	0.6	9
155	Kinetic electron emission by grazing atom scattering from clean flat metal surfaces. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 455-463.	0.6	7
156	Highly charged ion-induced potential electron emission from clean Au(111): Dependence on the projectile angle of incidence. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 520-523.	0.6	7
157	Surface nanostructures induced by slow highly charged ions on CaF2 single crystals. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 346-349.	0.6	27
158	Potential energy threshold for nano-hillock formation by impact of slow highly charged ions on a CaF2(111) surface. Nuclear Instruments & Methods in Physics Research B, 2007, 258, 167-171.	0.6	48
159	Electronic excitations during grazing scattering of hydrogen atoms on KI(001) and LiF(001) surfaces. European Physical Journal D, 2007, 41, 505-511.	0.6	2
160	Potential Electron Emission from Metal and Insulator Surfaces. , 2007, , 79-112.		15
161	Scanning Probe Microscopy: From Living Cells to the Subatomic Range. Nanoscience and Technology, 2006, , 27-53.	1.5	О
162	Effect of particle-induced electron emission (PIEE) on the plasma sheath voltage. Plasma Physics and Controlled Fusion, 2006, 48, 1093-1103.	0.9	10

#	Article	IF	Citations
163	Novel method for unambiguous ion identification in mixed ion beams extracted from an electron beam ion trap. Review of Scientific Instruments, 2006, 77, 093303.	0.6	7
164	Interaction of slow multiply charged Ar ions with a LiF insulator surface. E-Journal of Surface Science and Nanotechnology, 2006, 4, 388-393.	0.1	0
165	INTERACTION OF SLOW MULTIPLY CHARGED IONS WITH INSULATOR SURFACES., 2006, , .		0
166	Inelastic interactions of slow ions and atoms with surfaces. Nuclear Instruments & Methods in Physics Research B, 2005, 233, 111-124.	0.6	17
167	Electron Emission for Grazing Slow Atom and Ion Impact on Monocrystalline Metal and Insulator Surfaces. Physica Scripta, 2005, 72, C12-C21.	1.2	4
168	Ion-induced kinetic electron emission from HOPG with different surface orientation. Europhysics Letters, 2005, 70, 768-774.	0.7	26
169	Scanning Probe Microscopy across Dimensions. , 2005, , 139-165.		0
170	Potential sputtering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 77-102.	1.6	139
171	Kinetic electron emission for planar versus axial surface channeling of He atoms and ions. Physical Review B, 2004, 69, .	1.1	16
172	$H+\hat{a}\in He(1s2)$ collisions: CTMC calculations of single ionisation and excitation cross sections. International Journal of Mass Spectrometry, 2004, 233, 137-144.	0.7	4
173	State-selective and total single-electron capture for impact of slow He2+ (E ≤ keV) on H2, O2 and CO. International Journal of Mass Spectrometry, 2004, 233, 239-244.	0.7	9
174	Separation of Potential and Kinetic Electron Emission for Grazing Impact of Multiply Charged Ar Ions on a LiF(001) Surface. Physical Review Letters, 2004, 93, 263201.	2.9	30
175	Electronic processes during impact of fast hydrogen atoms on a LiF() surface. Nuclear Instruments & Methods in Physics Research B, 2003, 212, 45-50.	0.6	17
176	Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions. Nuclear Instruments & Methods in Physics Research B, 2003, 203, 1-7.	0.6	4
177	Electronic processes near kinematic threshold for grazing scattering of fast hydrogen atoms from a LiF() surface. Nuclear Instruments & Methods in Physics Research B, 2003, 203, 23-28.	0.6	6
178	AFM search for slow MCI-produced nanodefects on atomically clean monocrystalline insulator surfaces. Nuclear Instruments & Methods in Physics Research B, 2003, 205, 751-757.	0.6	26
179	Electron emission and molecular fragmentation during hydrogen and deuterium ion impact on carbon surfaces. Journal of Nuclear Materials, 2003, 313-316, 670-674.	1.3	4
180	Edge plasma-relevant ion–surface collision processes. International Journal of Mass Spectrometry, 2003, 223-224, 21-36.	0.7	16

#	Article	IF	CITATIONS
181	Nanoscopic surface modification by slow ion bombardment. International Journal of Mass Spectrometry, 2003, 229, 27-34.	0.7	55
182	Kinetic electron emission from the selvage of a free-electron-gas metal. Physical Review B, 2003, 67, .	1.1	25
183	Slow Highly Charged Ions -A New Tool For Surface Nanostructuring? E-Journal of Surface Science and Nanotechnology, 2003, 1, 171-174.	0.1	29
184	Inelastic Interaction of Slow Ions with Clean Solid Surfaces. , 2003, , 3-45.		0
185	Excitation vs electron emission near the kinetic thresholds for grazing impact of hydrogen atoms on LiF(001). Physical Review B, 2002, 65, .	1.1	20
186	Statistics of electron and exciton production for grazing impact of keV hydrogen atoms on a LiF(001) surface. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 3315-3325.	0.6	17
187	Slow multicharged ions hitting a solid surface: From hollow atoms to novel applications. Europhysics News, 2002, 33, 215-217.	0.1	15
188	Ion induced kinetic electron emission from highly oriented pyrolytic graphite by impact of H+, C+, N+, and O+. Surface Science, 2002, 504, 59-65.	0.8	8
189	Single Electron Capture in Slow Collisions of Doubly Charged Ions with Dinuclear Molecules. International Journal of Molecular Sciences, 2002, 3, 209-219.	1.8	0
190	Kinetic electron emission from highly oriented pyrolytic graphite surfaces induced by singly charged ions. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 616-620.	0.6	9
191	Formation of surface excitons and electron emission during grazing impact of hydrogen atoms on LiF(). Nuclear Instruments & Methods in Physics Research B, 2002, 193, 645-650.	0.6	4
192	The Two-Mesh Grid Refinement Method for the B2 Code. Contributions To Plasma Physics, 2002, 42, 175-180.	0.5	3
193	The Two-Mesh Grid Refinement Method for the B2 Code. Contributions To Plasma Physics, 2002, 42, 175-180.	0.5	1
194	Excitation of plasmons by impact of slow ions on clean mono- and polycrystalline aluminum. Surface Science, 2001, 472, 195-204.	0.8	24
195	Interaction of Slow HCI with Solid Surfaces: What Do We Know, What Should We Know?. Physica Scripta, 2001, T92, 15-21.	1.2	7
196	Electron Emission in Grazing HCl?LiF(001) Collisions. Physica Scripta, 2001, T92, 135-137.	1.2	5
197	STM Studies of HCI-induced Surface Damage on Highly Oriented Pyrolytic Graphite. Physica Scripta, 2001, T92, 156-157.	1.2	13
198	Helium doped hydrogen or deuterium beam as cost effective and simple tool for plasma spectroscopy. Fusion Engineering and Design, 2001, 56-57, 941-946.	1.0	1

#	Article	IF	CITATIONS
199	Explorative studies for the development of fast He beam plasma diagnostics. Journal of Nuclear Materials, 2001, 290-293, 673-677.	1.3	3
200	Extension of the B2 code towards the plasma core for a self-consistent simulation of ASDEX upgrade scenarios. Journal of Nuclear Materials, 2001, 290-293, 571-574.	1.3	2
201	Slow-ion induced electron emission from clean metal surfaces: "Subthreshold kinetic emission―and "potential excitation of plasmons― Nuclear Instruments & Methods in Physics Research B, 2001, 182, 15-22.	0.6	26
202	Studies on electron emission during grazing impact of keV-hydrogen atoms on a LiF(001) surface via translational spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 23-28.	0.6	22
203	Sputtering of Au and Al2O3 surfaces by slow highly charged ions. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 143-147.	0.6	35
204	Electron emission by Doppler-mediated formation of doubly excited H \hat{a}^{**} ** in grazing incidence of protons on clean Al(111). Europhysics Letters, 2001, 54, 633-639.	0.7	2
205	Kinetically Assisted Potential Sputtering of Insulators by Highly Charged Ions. Physical Review Letters, 2001, 86, 3530-3533.	2.9	70
206	Observation of a threshold in potential sputtering of LiF surfaces. Nuclear Instruments & Methods in Physics Research B, 2000, 164-165, 517-521.	0.6	2
207	Coincidence measurements of highly charged ions interacting with surfaces. AIP Conference Proceedings, 2000, , .	0.3	0
208	Kinetic electron emission from clean polycrystalline gold induced by impact of slowC+,N+,O+,Ne+,Xe+,andAu+ions. Physical Review B, 2000, 62, 16116-16125.	1.1	56
209	Unexpected Behavior of the Stopping of Slow Ions in Ionic Crystals. Physical Review Letters, 2000, 84, 2124-2127.	2.9	56
210	Electron emission during grazingH0â^'LiF(001)collisions. Physical Review A, 2000, 62, .	1.0	15
211	Surface-induced dissociation of singly and multiply charged fullerene ions. Journal of Chemical Physics, 2000, 113, 5053.	1.2	20
212	Helium doped hydrogen or deuterium beam as cost effective and simple tool for plasma spectroscopy. Review of Scientific Instruments, 2000, 71, 3723.	0.6	6
213	Curve-crossing analysis for potential sputtering of insulators. Surface Science, 2000, 451, 197-202.	0.8	10
214	Electron emission from clean gold bombarded by slow Auq+ (q=1–3) ions. Journal of Applied Physics, 2000, 87, 8198-8200.	1,1	35
215	Modelling of fast neutral Li beams for fusion edge plasma diagnostics. Plasma Physics and Controlled Fusion, 1999, 41, 471-484.	0.9	34
216	Threshold for Potential Sputtering of LiF. Physical Review Letters, 1999, 83, 3948-3951.	2.9	49

#	Article	IF	CITATIONS
217	A highly sensitive quartz-crystal microbalance for sputtering investigations in slow ion–surface collisions. Review of Scientific Instruments, 1999, 70, 3696-3700.	0.6	63
218	Kinetic electron emission in the near-threshold region studied for different projectile charges. International Journal of Mass Spectrometry, 1999, 192, 407-413.	0.7	8
219	Potential sputtering: desorption from insulator surfaces by impact of slow multicharged ions. International Journal of Mass Spectrometry, 1999, 192, 415-424.	0.7	35
220	Edge plasma diagnostics on W7-AS and ASDEX-Upgrade using fast Li beams. Journal of Nuclear Materials, 1999, 266-269, 1279-1284.	1.3	22
221	Stability of multiply charged fullerene ions. European Physical Journal D, 1999, 9, 91-94.	0.6	5
222	Search for projectile charge dependence of kinetic electron emission from clean polycrystalline gold. Nuclear Instruments & Methods in Physics Research B, 1999, 154, 185-193.	0.6	37
223	DATABASE FOR INELASTIC COLLISIONS OF LITHIUM ATOMS WITH ELECTRONS, PROTONS, AND MULTIPLY CHARGED IONS. Atomic Data and Nuclear Data Tables, 1999, 72, 239-273.	0.9	56
224	Coincidence measurements of highly charged ions interacting with a clean $Au(111)$ surface. Physical Review A, 1999, 61, .	1.0	6
225	A versatile electron detector for studies on ion-surface scattering. Review of Scientific Instruments, 1999, 70, 1653-1657.	0.6	21
226	Hollow atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, R39-R65.	0.6	147
227	Fast Lithium Beam Edge Plasma Spectroscopy at IPP Garchingâ€"Status and Recent Developments. Fusion Science and Technology, 1999, 36, 289-295.	0.6	11
228	Separation of Kinetic and Potential Electron Emission in HCI-surface Interactions. Physica Scripta, 1999, T80, 76.	1.2	1
229	Evidence against the ?Coulomb Explosion? Model for Desorption from Insulator Surfaces by Slow Highly Charged Ions. Physica Scripta, 1999, T80, 240.	1.2	8
230	Stability of multiply charged fullerene ions. , 1999, , 91-94.		1
231	Projectile Charge Effects in Ion-induced Kinetic Electron Emission from Solid Surfaces. Physica Scripta, 1999, T80, 236.	1.2	1
232	Influence of the chemical state on the stopping of protons and He-ions in some oxides. Nuclear Instruments & Methods in Physics Research B, 1998, 136-138, 103-108.	0.6	23
233	Electron emission from a clean gold surface bombarded by slow multiply charged fullerenes. International Journal of Mass Spectrometry and Ion Processes, 1998, 174, 317-328.	1.9	22
234	Modelling kinetic electron emission for the impact of slow N+ on LiF. Surface Science, 1998, 417, 372-383.	0.8	7

#	Article	IF	CITATIONS
235	excitation by impact of slow ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 2585-2599.	0.6	15
236	Multicharged Ion Impact on Clean Au(111): Suppression of Kinetic Electron Emission in Glancing Angle Scattering. Physical Review Letters, 1998, 81, 1965-1968.	2.9	51
237	Final vibrational state resolved single-electron capture for impact of on and CO. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 5009-5024.	0.6	16
238	Suppression of potential electron emission for impact of slow multicharged fullerenes on clean gold. Physical Review A, 1997, 56, 3007-3010.	1.0	23
239	Emission of low-energy electrons from slowN6+ions interacting with a Au surface. Physical Review A, 1997, 56, 4774-4780.	1.0	26
240	Absence of a "Threshold Effect" in the Energy Loss of Slow Protons Traversing Large-Band-Gap Insulators. Physical Review Letters, 1997, 79, 4112-4115.	2.9	91
241	Comment on "Observation of Hollow Atoms or lons above Insulator and Metal Surfaces". Physical Review Letters, 1997, 79, 2590-2590.	2.9	10
242	Electron emission for impact of slow fullerene ions on clean gold. Physica Scripta, 1997, T73, 318-319.	1.2	0
243	Projectile charge dependence of kinetic electron emission from clean gold. Physica Scripta, 1997, T73, 322-323.	1.2	8
244	Sputter yields of insulators bombarded with hyperthermal multiply charged ions. Physica Scripta, 1997, T73, 307-310.	1.2	51
245	Precise total electron yield measurements for impact of singly or multiply charged ions on clean solid surfaces. Review of Scientific Instruments, 1997, 68, 165-169.	0.6	31
246	Potential Sputtering of CleanSiO2by Slow Highly Charged Ions. Physical Review Letters, 1997, 79, 945-948.	2.9	130
247	Contribution of valence electrons to the electronic energy loss of hydrogen ions in oxides. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 102-105.	0.6	5
248	Structure and dynamics of hollow Ne atoms formed near a C and Al surface. Nuclear Instruments & Methods in Physics Research B, 1997, 124, 303-313.	0.6	19
249	Charge state effects in the interaction of multiply charged ions with surfaces. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 146-152.	0.6	10
250	Interaction of slow multicharged ions with solid surfaces. Surface Science Reports, 1997, 27, 113-239.	3.8	361
251	Distinction between multicharged fullerene ions and their fragment ions with equal charge-to-mass. International Journal of Mass Spectrometry and Ion Processes, 1997, 163, 9-14.	1.9	15
252	CROSS SECTIONS FOR COLLISION PROCESSES OF LI ATOMS INTERACTING WITH ELECTRONS, PROTONS, MULTIPLY CHARGED IONS, AND HYDROGEN MOLECULES. Atomic Data and Nuclear Data Tables, 1997, 65, 155-180.	0.9	29

#	Article	IF	Citations
253	Electron capture by doubly charged ions from laser excited alkali atoms: III. collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 1515-1523.	0.6	9
254	Interaction of highly charged ions with metal and insulator surfaces. AIP Conference Proceedings, 1996, , .	0.3	1
255	Interaction of slow multicharged ions with solid surfaces: current concepts and new information on slow electron emission. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 224-232.	0.6	12
256	On the formation of hollow atoms in front of an insulating LiF surface. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 237-241.	0.6	15
257	Image acceleration of highly charged ions by metal surfaces. Physical Review A, 1996, 53, 880-885.	1.0	75
258	Electronic Stopping in a He-H2Mixture Substantially Exceeds Bragg's Rule Value. Physical Review Letters, 1996, 76, 3104-3107.	2.9	5
259	Na(3pâ†3s) excitation by impact of slow multiply charged ions. Physical Review A, 1996, 54, 3022-3028.	1.0	7
260	Recombination-pumped XUV lasing in capillary discharges and dynamicz-pinches. Journal Physics D: Applied Physics, 1996, 29, 2091-2097.	1.3	4
261	An experimental investigation of ablative capillary discharges as possible sources for amplified spontaneous emission in the XUV. Journal Physics D: Applied Physics, 1996, 29, 1933-1940.	1.3	5
262	Indication of recombination-pumped population inversion in O VI and Li III ions using an ablative capillary discharge. , 1995, , .		2
263	Two programs for calculations of collisional atomic data for lithium beam plasma spectroscopy. Computer Physics Communications, 1995, 88, 83-88.	3.0	2
264	Ion-induced electron emission from solid surfaces: information content of the electron number statistics. International Journal of Mass Spectrometry and Ion Processes, 1995, 149-150, 45-57.	1.9	16
265	Secondary ion emission from lithium fluoride under impact of slow multicharged ions. Nuclear Instruments & Methods in Physics Research B, 1995, 98, 465-468.	0.6	32
266	Escape probabilities for electrons emitted during the interaction of slow highly charged ions with metal surfaces. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 33-36.	0.6	6
267	Electron emission from polycrystalline lithium fluoride bombarded by slow multicharged ions. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 284-289.	0.6	23
268	Potential and kinetic electron emission from clean gold induced by multicharged nitrogen ions. Nuclear Instruments & Methods in Physics Research B, 1995, 100, 402-406.	0.6	26
269	Potential Sputtering of Lithium Fluoride by Slow Multicharged Ions. Physical Review Letters, 1995, 74, 5280-5283.	2.9	121
270	Do Hollow Atoms Exist in Front of an Insulating LiF(100) Surface?. Physical Review Letters, 1995, 75, 217-219.	2.9	66

#	Article	IF	Citations
271	Scheme for stationary continuousâ€wave vacuum―and extremeâ€ultraviolet lasing based on a plasma jet. Journal of Applied Physics, 1995, 77, 3575-3577.	1.1	O
272	Electron Emission from Polycrystalline Lithium Fluoride Induced by Slow Multicharged Ions. Europhysics Letters, 1995, 29, 55-60.	0.7	54
273	Escape probabilities for electrons emitted during the interaction of slow highly charged ions with metal surfaces., 1995, 102, 33-33.		3
274	Singleâ€stage 5 GHz ECRâ€multicharged ion source with high magnetic mirror ratio and biased disk. Review of Scientific Instruments, 1994, 65, 1091-1093.	0.6	42
275	Timeâ€dependent collisionalâ€radiative model for capillary discharge plasmas. Journal of Applied Physics, 1994, 76, 733-737.	1.1	9
276	Electron emission induced by cluster impact on a clean metal surface. Nuclear Instruments & Methods in Physics Research B, 1994, 88, 44-48.	0.6	14
277	Slow electrons produced by slow multicharged ions on a clean metal surface. Nuclear Instruments & Methods in Physics Research B, 1994, 87, 130-137.	0.6	2
278	Electron emission induced by slow highly charged ions on a clean metal surface. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 523-532.	0.6	8
279	Electron emission and image-charge acceleration for the impact of very highly charged ions on clean gold. Physical Review A, 1994, 49, 4693-4702.	1.0	70
280	Demonstration of resonant fluorescence in Mo VII induced by Mo XII for possible lasing near 600 \tilde{A} Journal of the Optical Society of America B: Optical Physics, 1994, 11, 1436.	0.9	3
281	The statistics of electron emission from clean metal surfaces induced by slow ions: measurement and recent applications. International Journal of Mass Spectrometry and Ion Processes, 1993, 129, 17-29.	1.9	7
282	Slow electron emission from slow hollow atoms produced near a clean metal surface. Nuclear Instruments & Methods in Physics Research B, 1993, 78, 99-105.	0.6	8
283	lon-induced electron emission from metal surfaces — insights from the emission statistics. Surface Science, 1993, 281, 143-152.	0.8	44
284	Emission of electrons from a clean gold surface induced by slow, very highly charged ions at the image charge acceleration limit. Physical Review Letters, 1993, 71, 1943-1946.	2.9	150
285	Neutralization of slow multicharged ions at a clean gold surface: Total electron yields. Physical Review A, 1993, 48, 2182-2191.	1.0	64
286	Fast lithiumâ€beam spectroscopy of tokamak edge plasmas. Review of Scientific Instruments, 1993, 64, 2285-2292.	0.6	62
287	Electron capture by doubly charged ions from laser-excited alkali atoms: II. He2+-Li*(2p) collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 2153-2164.	0.6	19
288	Near-Threshold Electron Emission from Slow Cluster Impact on Clean Gold. Europhysics Letters, 1993, 22, 597-602.	0.7	19

#	Article	IF	CITATIONS
289	Electron capture by doubly charged ions from laser-excited alkali atoms: I. He2+-Na*(3p) collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 2137-2151.	0.6	34
290	Application of an electro-optical modulator in inelastic collision studies with laser-excited Na*(3p) atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1993, 26, 297-303.	0.6	7
291	Distinction between multicharged ion species with equal q/m. Review of Scientific Instruments, 1993, 64, 3499-3502.	0.6	9
292	Neutralization of slow multicharged ions at a clean gold surface: Electron-emission statistics. Physical Review A, 1993, 48, 2192-2197.	1.0	30
293	Nearâ€threshold electron emission from impact of slow van der Waals clusters and fullerene ions on clean gold. Journal of Chemical Physics, 1993, 99, 8254-8261.	1.2	32
294	Studies on Slow Particle-Induced Electron Emission from Clean Metal Surfaces by Means of Electron Emission Statistics. NATO ASI Series Series B: Physics, 1993, , 129-148.	0.2	0
295	Radial temperature distributions of C6+ions in the TEXTOR edge plasma measured with lithium beam activated charge exchange spectroscopy. Nuclear Fusion, 1992, 32, 351-359.	1.6	52
296	Reconstruction of plasma edge density profiles from Li I (2s-2p) emission profiles. Plasma Physics and Controlled Fusion, 1992, 34, 1173-1183.	0.9	73
297	Statistics of ion-induced kinetic electron emission: A comparison between experimental and Monte Carlo–simulated results. Physical Review B, 1992, 46, 3101-3104.	1.1	24
298	Electron capture inHe2+collisions with alignedNa*(3p) atoms. Physical Review Letters, 1992, 68, 3277-3280.	2.9	44
299	Coherent population trapping probed by charge exchange reactions. Physical Review Letters, 1992, 69, 3452-3454.	2.9	22
300	Electron emission from slow hollow atoms at a clean metal surface. Physical Review Letters, 1992, 69, 1140-1143.	2.9	115
301	Tokamak edge plasma densities measured by means of active lithium beam diagnostics. Journal of Nuclear Materials, 1992, 196-198, 928-932.	1.3	14
302	Lα emission from (0.1–20-keV)H+impact on Li, Na, and K. Physical Review A, 1991, 43, 127-133.	1.0	24
303	Experimental and theoretical investigation of electron capture and target excitation in (1-20 keV)H+-K collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 647-655.	0.6	4
304	Laser enhanced Lalphaemission from (50 eV-15 keV) H+-Na collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 4419-4429.	0.6	22
305	On the measurement of statistics for particle-induced electron emission from a clean metal surface. Applied Surface Science, 1991, 47, 139-147.	3.1	87
306	Recent advances in understanding particle-induced electron emission from metal surfaces. Nuclear Instruments & Methods in Physics Research B, 1991, 58, 301-308.	0.6	52

#	Article	IF	Citations
307	Multicharged ion-atom collisions ? application for tokamak edge plasma physics. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 21, S167-S168.	1.0	3
308	Absolute concentrations of light impurity ions in tokamak discharges measured with lithium-beam-activated charge-exchange spectroscopy. Applied Physics B, Photophysics and Laser Chemistry, 1991, 52, 71-78.	1.5	52
309	Quenching of Einstein coefficients by photons. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, 4489-4504.	0.6	4
310	State-Selective Electron Capture by He $\langle \sup 2+\langle \sup \rangle$ Ions from Laser-Excited Na*(3 $\langle i \rangle p \langle i \rangle$). Europhysics Letters, 1991, 16, 557-561.	0.7	11
311	Multicharged ion-atom collisions - application for tokamak edge plasma physics. , 1991, , 167-168.		0
312	Threshold of ion-induced kinetic electron emission from a clean metal surface. Physical Review A, 1990, 42, 5780-5783.	1.0	142
313	Statistics of ionâ€induced electron emission from a clean metal surface. Review of Scientific Instruments, 1989, 60, 3151-3159.	0.6	135
314	Quenching of Einstein's ACoefficients by Photons. Physical Review Letters, 1989, 63, 1540-1540.	2.9	0
315	Quenching of Einstein'sAcoefficients by photons. Physical Review Letters, 1989, 63, 1215-1218.	2.9	13
316	Statistics of potential electron emission. Radiation Effects and Defects in Solids, 1989, 109, 129-136.	0.4	7
317	State-selective electron capture in He2+-Li collisions studied jointly by photon and translational energy spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 1027-1034.	0.6	16
318	On the statistics of heavy-particle-induced kinetic electron emission from a clean metal surface. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 139, 395-398.	0.9	13
319	Recent developments for plasma edge diagnostics using atomic beams. Journal of Nuclear Materials, 1989, 162-164, 574-581.	1.3	73
320	Electronic Effects in Slow Heavy-Particle-Induced Electron Emission from a Clean Metal Surface. Europhysics Letters, 1989, 10, 679-685.	0.7	16
321	Experimental Investigations on Electron Capture in the Presence of Metastable Ion Beam Fractions. Physica Scripta, 1989, T28, 96-100.	1.2	8
322	STATISTICS OF ELECTRON EMISSION FROM METAL SURFACES BOMBARDED BY IONS IN DIFFERENT CHARGE STATES. Journal De Physique Colloque, 1989, 50, C1-533-C1-539.	0.2	1
323	Lαemission in H+-Na collisions (1-20 keV). Journal of Physics B: Atomic and Molecular Physics, 1987, 20, L803-L807.	1.6	13
324	Charge transfer and target excitation in H+-Na(3s) collisions (2-20 keV). Journal of Physics B: Atomic and Molecular Physics, 1987, 20, 2025-2030.	1.6	40

#	Article	IF	CITATIONS
325	Electron capture and target excitation in slow ion-alkali atom collisions. Zeitschrift FÃ $\frac{1}{4}$ r Physik D-Atoms Molecules and Clusters, 1987, 6, 145-153.	1.0	23
326	Primary ion state conservation in electron capture from Li(2s) by singly charged ions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 114, 81-83.	0.9	4
327	Electron capture from Li(2s) by doubly charged ions (5–40 keV). Physical Review A, 1986, 33, 846-850.	1.0	10
328	Plasmadiagnostik mit Lithiumatomstrahl-aktivierter Umladungsspektroskopie. Annalen Der Physik, 1985, 497, 228-238.	0.9	18
329	Excitation by impact of He+(2-20 keV) on Li(2s). Journal of Physics B: Atomic and Molecular Physics, 1985, 18, L741-L746.	1.6	8
330	Inelastic H+-Li(2s) collisions (2-20 keV). III. Electron capture into the H(2s) subshell. Journal of Physics B: Atomic and Molecular Physics, 1985, 18, 2493-2501.	1.6	10
331	Total single-electron-capture cross sections for impact ofH+,H2+,He+, andNe+(2–20 keV) on Li. Physical Review A, 1985, 31, 67-71.	1.0	30
332	Inelastic H+-Li(2s) collisions (2-20 keV). I. Experimental methods and Li(2p) excitation. Journal of Physics B: Atomic and Molecular Physics, 1984, 17, 4185-4199.	1.6	44
333	Inelastic H+-Li(2s) collisions (2-20 keV). II. Electron capture into H(2p) and H(3,I) subshells. Journal of Physics B: Atomic and Molecular Physics, 1984, 17, 4201-4211.	1.6	35
334	Measurement of the stopping cross section for protons in copper by backscattering using various methods for foil-thickness determination. Nuclear Instruments & Methods in Physics Research B, 1984, 1, 1-8.	0.6	15
335	Accuracy of stopping cross section determination from RBS-spectra by Warters' method. Nuclear Instruments & Methods in Physics Research, 1983, 212, 529-532.	0.9	13
336	Search for an influence of the measuring method on stopping cross section data near the maximum. Nuclear Instruments & Methods in Physics Research, 1983, 218, 811-816.	0.9	14
337	Nanostructuring surfaces with slow multiply-charged ions. , 0, , .		O