Abel Torres-EspÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7079352/publications.pdf

Version: 2024-02-01

361045 454577 1,078 44 20 30 citations h-index g-index papers 51 51 51 1549 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1285-1296.	3.9	2
2	Excavating FAIR Data: the Case of the Multicenter Animal Spinal Cord Injury Study (MASCIS), Blood Pressure, and Neuro-Recovery. Neuroinformatics, 2022, 20, 39-52.	1.5	10
3	Promoting FAIR Data Through Community-driven Agile Design: the Open Data Commons for Spinal Cord Injury (odc-sci.org). Neuroinformatics, 2022, 20, 203-219.	1.5	10
4	Appendicular Fracture and Polytrauma Correlate with Outcome of Spinal Cord Injury: A Transforming Research and Clinical Knowledge in Spinal Cord Injury Study. Journal of Neurotrauma, 2022, , .	1.7	0
5	Using hierarchical unsupervised learning to integrate and reduce multi-level and multi-paraspinal muscle MRI data in relation to low back pain. European Spine Journal, 2022, 31, 2046-2056.	1.0	1
6	Empowering Data Sharing and Analytics through the Open Data Commons for Traumatic Brain Injury Research. Neurotrauma Reports, 2022, 3, 139-157.	0.5	9
7	Decision tree–based machine learning analysis of intraoperative vasopressor use to optimize neurological improvement in acute spinal cord injury. Neurosurgical Focus, 2022, 52, E9.	1.0	2
8	Expert-augmented automated machine learning optimizes hemodynamic predictors of spinal cord injury outcome. PLoS ONE, 2022, 17, e0265254.	1.1	9
9	Unsupervised Machine Learning on Motion Capture Data Uncovers Movement Strategies in Low Back Pain. Frontiers in Bioengineering and Biotechnology, 2022, 10, 868684.	2.0	1
10	Chondroitin sulfate proteoglycans prevent immune cell phenotypic conversion and inflammation resolution via TLR4 in rodent models of spinal cord injury. Nature Communications, 2022, 13, .	5.8	27
11	Cisplatin-induced peripheral neuropathy is associated with neuronal senescence-like response. Neuro-Oncology, 2021, 23, 88-99.	0.6	36
12	Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury. Experimental Neurology, 2021, 339, 113543.	2.0	21
13	Diagnostic blood RNA profiles for human acute spinal cord injury. Journal of Experimental Medicine, 2021, 218, .	4.2	31
14	Beyond the lesion site: minocycline augments inflammation and anxiety-like behavior following SCI in rats through action on the gut microbiota. Journal of Neuroinflammation, 2021, 18, 144.	3.1	28
15	Automation of training and testing motor and related tasks in pre-clinical behavioural and rehabilitative neuroscience. Experimental Neurology, 2021, 340, 113647.	2.0	8
16	Reproducible analysis of disease space via principal components using the novel R package syndRomics. ELife, 2021, 10, .	2.8	22
17	FAIR Data Reuse in Traumatic Brain Injury: Exploring Inflammation and Age as Moderators of Recovery in the TRACK-TBI Pilot. Frontiers in Neurology, 2021, 12, 768735.	1.1	4
18	Topological network analysis of patient similarity for precision management of acute blood pressure in spinal cord injury. ELife, 2021, 10, .	2.8	15

#	Article	IF	Citations
19	Quantifying the kinematic features of dexterous finger movements in nonhuman primates with markerless tracking., 2021, 2021, 6110-6115.		О
20	FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research. Journal of Neurotrauma, 2020, 37, 831-838.	1.7	27
21	Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Experimental Neurology, 2020, 324, 113136.	2.0	21
22	Injury volume extracted from MRI predicts neurologic outcome in acute spinal cord injury: A prospective TRACK-SCI pilot study. Journal of Clinical Neuroscience, 2020, 82, 231-236.	0.8	6
23	Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS ONE, 2020, 15, e0226128.	1.1	77
24	Transforming Research and Clinical Knowledge in Spinal Cord Injury (TRACK-SCI): an overview of initial enrollment and demographics. Neurosurgical Focus, 2020, 48, E6.	1.0	12
25	A motorized pellet dispenser to deliver high intensity training of the single pellet reaching and grasping task in rats. Behavioural Brain Research, 2018, 336, 67-76.	1.2	22
26	Rehabilitative Training in Animal Models of Spinal Cord Injury. Journal of Neurotrauma, 2018, 35, 1970-1985.	1.7	36
27	Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury. Brain, 2018, 141, 1946-1962.	3.7	74
28	Cyclosporine-immunosuppression does not affect survival of transplanted skin-derived precursor Schwann cells in the injured rat spinal cord. Neuroscience Letters, 2017, 658, 67-72.	1.0	4
29	Following Spinal Cord Injury Transected Reticulospinal Tract Axons Develop New Collateral Inputs to Spinal Interneurons in Parallel with Locomotor Recovery. Neural Plasticity, 2017, 2017, 1-15.	1.0	33
30	Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells. Cell Transplantation, 2016, 25, 1833-1852.	1.2	30
31	Single pellet grasping following cervical spinal cord injury in adult rat using an automated full-time training robot. Behavioural Brain Research, 2016, 299, 59-71.	1.2	22
32	Beneficial effects of IL-37 after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1411-1416.	3.3	75
33	Immunosuppression of Allogenic Mesenchymal Stem Cells Transplantation after Spinal Cord Injury Improves Graft Survival and Beneficial Outcomes. Journal of Neurotrauma, 2015, 32, 367-380.	1.7	32
34	Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cellular and Molecular Life Sciences, 2015, 72, 2719-2737.	2.4	29
35	Activity dependent the spinal changes that motoneurons suffer after a peripheral nerve injury. Experimental Neurology, 2015, 263, 293-305.	2.0	37
36	Bone marrow mesenchymal stromal cells and olfactory ensheathing cells transplantation after spinal cord injury $\hat{a} \in \hat{a}$ a morphological and functional comparison in rats. European Journal of Neuroscience, 2014, 39, 1704-1717.	1.2	55

#	Article	IF	CITATIONS
37	Dithiocarb (<i><scp>N</scp></i> , <i><scp>N</scp></i> å€diethyldithiocarbamate, <scp>DEDTC</scp>) decreases levels of biogenic monoamines in the adult mouse brain. Neuropathology and Applied Neurobiology, 2014, 40, 747-758.	1.8	2
38	Neurite-J: An Image-J plug-in for axonal growth analysis in organotypic cultures. Journal of Neuroscience Methods, 2014, 236, 26-39.	1.3	74
39	Neuroprotection and Axonal Regeneration After Lumbar Ventral Root Avulsion by Re-implantation and Mesenchymal Stem Cells Transplant Combined Therapy. Neurotherapeutics, 2013, 10, 354-368.	2.1	30
40	Quantitative assessment of locomotion and interlimb coordination in rats after different spinal cord injuries. Journal of Neuroscience Methods, 2013, 213, 165-178.	1.3	24
41	Gene Expression Changes in the Injured Spinal Cord Following Transplantation of Mesenchymal Stem Cells or Olfactory Ensheathing Cells. PLoS ONE, 2013, 8, e76141.	1.1	42
42	Adult Stem Cell Transplants for Spinal Cord Injury Repair: Current State in Preclinical Research. Current Stem Cell Research and Therapy, 2011, 6, 273-287.	0.6	62
43	Functional involvement of the lumbar spinal cord after contusion to T8 spinal segment of the rat. Restorative Neurology and Neuroscience, 2010, 28, 781-792.	0.4	6
44	Analysis of axonal growth in organotypic neural cultures. Protocol Exchange, 0, , .	0.3	3