Jenny Suckale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7079326/publications.pdf Version: 2024-02-01

IENNY SUCKALE

#	Article	IF	CITATIONS
1	Magma Mixing During Conduit Flow is Reflected in Meltâ€Inclusion Data From Persistently Degassing Volcanoes. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	2
2	Science Translation During the COVID-19 Pandemic: An Academic-Public Health Partnership to Assess Capacity Limits in California. American Journal of Public Health, 2022, 112, 308-315.	2.7	2
3	Disrupt the upper or the lower conduit? The dual role of gas exsolution in the conduits of persistently active volcanoes. Journal of Fluid Mechanics, 2022, 942, .	3.4	0
4	Traffic accidents and delays present contrasting pictures of traffic resilience to coastal flooding in the San Francisco Bay Area, USA. Urban Climate, 2021, 37, 100851.	5.7	6
5	Rising Seas, Rising Inequity? Communities at Risk in the San Francisco Bay Area and Implications for Adaptation Policy. Earth's Future, 2021, 9, e2020EF001963.	6.3	5
6	Interactions Between Gas Slug Ascent and Exchange Flow in the Conduit of Persistently Active Volcanoes. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022120.	3.4	3
7	Integrating urban traffic models with coastal flood maps to quantify the resilience of traffic systems to episodic coastal flooding. MethodsX, 2021, 8, 101483.	1.6	3
8	Shear Variation at the Iceâ€Till Interface Changes the Spatial Distribution of Till Porosity and Meltwater Drainage. Journal of Geophysical Research F: Earth Surface, 2021, 126, .	2.8	6
9	Periodic outgassing as a result of unsteady convection in Ray lava lake, Mount Erebus, Antarctica. Earth and Planetary Science Letters, 2020, 530, 115903.	4.4	3
10	Direct numerical simulations of viscous suspensions with variably shaped crystals. Journal of Computational Physics, 2020, 401, 109021.	3.8	10
11	When floods hit the road: Resilience to flood-related traffic disruption in the San Francisco Bay Area and beyond. Science Advances, 2020, 6, eaba2423.	10.3	56
12	Taylor drop in a closed vertical pipe. Journal of Fluid Mechanics, 2020, 902, .	3.4	4
13	The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10740-10745.	7.1	15
14	Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs). Geoscientific Model Development, 2020, 13, 955-976.	3.6	13
15	Crystal Fractionation by Crystalâ€Ðriven Convection. Geophysical Research Letters, 2020, 47, e2019GL086784.	4.0	10
16	Flowâ€ŧoâ€&liding Transition in Crystalâ€Bearing Magma. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018549.	3.4	7
17	Water pressure fluctuations control variability in sediment flux and slip dynamics beneath glaciers and ice streams. Communications Earth & Environment, 2020, 1, .	6.8	12
18	Crystal aggregates record the pre-eruptive flow field in the volcanic conduit at Kīlauea, Hawaii. Science Advances, 2020, 6, .	10.3	8

JENNY SUCKALE

#	Article	IF	CITATIONS
19	A continuum model of multi-phase reactive transport in igneous systems. Geophysical Journal International, 2019, 219, 185-222.	2.4	30
20	Spatial heterogeneity in subglacial drainage driven byÂtillÂerosion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190259.	2.1	7
21	A residual-based shock capturing scheme for the continuous/discontinuous spectral element solution of the 2D shallow water equations. Advances in Water Resources, 2018, 114, 45-63.	3.8	15
22	Adding a community partner to service learning may elevate learning but not necessarily service. International Journal of Disaster Risk Reduction, 2018, 28, 80-87.	3.9	5
23	Slug Stability in Flaring Geometries and Ramifications for Lava Lake Degassing. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,431.	3.4	5
24	Bistability of buoyancy-driven exchange flows in vertical tubes. Journal of Fluid Mechanics, 2018, 850, 525-550.	3.4	20
25	Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans. Space Science Reviews, 2018, 214, 1.	8.1	43
26	Linking social, ecological, and physical science to advance natural and natureâ€based protection for coastal communities. Annals of the New York Academy of Sciences, 2017, 1399, 5-26.	3.8	108
27	The Coupled Dynamics of Meltwater Percolation and Granular Deformation in the Sediment Layer Underlying Parts of the Big Ice Sheets. , 2017, , .		3
28	Direct numerical simulations of gas–solid–liquid interactions in dilute fluids. International Journal of Multiphase Flow, 2017, 96, 34-47.	3.4	18
29	Sediment behavior controls equilibrium width of subglacial channels. Journal of Glaciology, 2017, 63, 1034-1048.	2.2	13
30	Physicsâ€based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophysical Research Letters, 2017, 44, 7773-7782.	4.0	64
31	Determining conditions that allow a shear margin to coincide with a Röthlisberger channel. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1273-1294.	2.8	9
32	Collective properties of injectionâ€induced earthquake sequences: 1. Model description and directivity bias. Journal of Geophysical Research: Solid Earth, 2016, 121, 3609-3637.	3.4	23
33	Collective properties of injectionâ€induced earthquake sequences: 2. Spatiotemporal evolution and magnitude frequency distributions. Journal of Geophysical Research: Solid Earth, 2016, 121, 3638-3665.	3.4	29
34	Flowâ€ŧoâ€fracture transition in a volcanic mush plug may govern normal eruptions at Stromboli. Geophysical Research Letters, 2016, 43, 12,071.	4.0	45
35	Rapid ice flow rearrangement induced by subglacial drainage in West Antarctica. Geophysical Research Letters, 2016, 43, 11,697.	4.0	24
36	Subglacial hydrology and ice stream margin locations. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1352-1368.	2.8	54

JENNY SUCKALE

#	Article	IF	CITATIONS
37	Deformation-induced melting in the margins of the West Antarctic ice streams. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1004-1025.	2.8	73
38	Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions. Journal of Geophysical Research, 2012, 117, .	3.3	27
39	Crystals stirred up: 2. Numerical insights into the formation of the earliest crust on the Moon. Journal of Geophysical Research, 2012, 117, .	3.3	49
40	Reply to the comment by Mike R. James et al. on "lt takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity― Journal of Geophysical Research, 2011, 116, .	3.3	6
41	Moderate-to-large seismicity induced by hydrocarbon production. The Leading Edge, 2010, 29, 310-319.	0.7	50
42	It takes three to tango: 1. Simulating buoyancyâ€driven flow in the presence of large viscosity contrasts. Journal of Geophysical Research, 2010, 115, .	3.3	27
43	It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity. Journal of Geophysical Research, 2010, 115, .	3.3	30
44	High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophysical Journal International, 2009, 178, 775-791.	2.4	69
45	Probabilistic Seismic Hazard Model for Vanuatu. Bulletin of the Seismological Society of America, 2009, 99, 2108-2126.	2.3	10
46	Biased witnesses: Crystal thermal records may give conflicting accounts of magma cooling. Journal of Geophysical Research: Solid Earth, 0, , .	3.4	1