
Dolores Di Vizio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7079251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2014, 3, 26913.	12.2	2,110
3	Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of Extracellular Vesicles, 2016, 5, 32945.	12.2	703
4	Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes. Seminars in Cell and Developmental Biology, 2015, 40, 41-51.	5.0	675
5	Oncosome Formation in Prostate Cancer: Association with a Region of Frequent Chromosomal Deletion in Metastatic Disease. Cancer Research, 2009, 69, 5601-5609.	0.9	325
6	Large Oncosomes in Human Prostate Cancer Tissues and in the Circulation of Mice with Metastatic Disease. American Journal of Pathology, 2012, 181, 1573-1584.	3.8	321
7	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	4.1	317
8	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	12.2	314
9	Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget, 2015, 6, 11327-11341.	1.8	289
10	Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. Journal of Extracellular Vesicles, 2018, 7, 1505403.	12.2	286
11	Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer. International Journal of Molecular Sciences, 2016, 17, 175.	4.1	255
12	Proteome Scale Characterization of Human S-Acylated Proteins in Lipid Raft-enriched and Non-raft Membranes. Molecular and Cellular Proteomics, 2010, 9, 54-70.	3.8	252
13	Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nature Cell Biology, 2021, 23, 87-98.	10.3	209
14	Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles, 2017, 6, 1396823.	12.2	185
15	A brief history of nearly EVâ€erything – The rise and rise of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12144.	12.2	150
16	Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12182.	12.2	147
17	An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease spread and epithelial Akt activation. Cell Cycle, 2009, 8, 2420-2424.	2.6	141
18	Oncosomes – large and small: what are they, where they came from?. Journal of Extracellular Vesicles, 2016, 5, 33109.	12.2	133

DOLORES DI VIZIO

#	Article	IF	CITATIONS
19	MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer. Cancer Research, 2017, 77, 2306-2317.	0.9	119
20	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	30.7	113
21	Size matters in nanoscale communication. Nature Cell Biology, 2018, 20, 228-230.	10.3	107
22	Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. Journal of Pathology, 2013, 231, 77-87.	4.5	93
23	Protein Composition Reflects Extracellular Vesicle Heterogeneity. Proteomics, 2019, 19, e1800167.	2.2	86
24	Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. Journal of Experimental and Clinical Cancer Research, 2019, 38, 317.	8.6	82
25	Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 2008, 7, 2257-2267.	2.6	80
26	Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells. Cancer Biology and Therapy, 2014, 15, 409-418.	3.4	64
27	Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity. Journal of Biological Chemistry, 2017, 292, 2903-2915.	3.4	63
28	Cholesterol and Cholesterol-Rich Membranes in Prostate Cancer: An Update. Tumori, 2008, 94, 633-639.	1.1	60
29	Large and small extracellular vesicles released by glioma cells <i>in vitro</i> and <i>in vivo</i> . Journal of Extracellular Vesicles, 2020, 9, 1689784.	12.2	57
30	Bio-Inspired NanoVilli Chips for Enhanced Capture of Tumor-Derived Extracellular Vesicles: Toward Non-Invasive Detection of Gene Alterations in Non-Small Cell Lung Cancer. ACS Applied Materials & Interfaces, 2019, 11, 13973-13983.	8.0	55
31	Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential. Cancer Research, 2018, 78, 6086-6097.	0.9	49
32	Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Scientific Reports, 2015, 5, 12136.	3.3	48
33	Outer Membrane Vesicles Derived From Escherichia coli Regulate Neutrophil Migration by Induction of Endothelial IL-8. Frontiers in Microbiology, 2018, 9, 2268.	3.5	48
34	Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biology and Therapy, 2007, 6, 1269-1274.	3.4	47
35	Towards mechanisms and standardization in extracellular vesicle and extracellular RNA studies: results of a worldwide survey. Journal of Extracellular Vesicles, 2018, 7, 1535745.	12.2	45
36	High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology, 2017, 14, 305-316.	3.1	43

DOLORES DI VIZIO

#	Article	IF	CITATIONS
37	Comprehensive palmitoylâ€proteomic analysis identifies distinct protein signatures for large and small cancerâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1764192.	12.2	37
38	Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non- <i>S</i> -Acylated Proteins and Enables Deep <i>S</i> -Acylproteomic Analysis. Analytical Chemistry, 2019, 91, 9858-9866.	6.5	32
39	Cholesterol and cholesterol-rich membranes in prostate cancer: an update. Tumori, 2008, 94, 633-9.	1.1	32
40	PKM2 is not required for colon cancer initiated by APC loss. Cancer & Metabolism, 2017, 5, 10.	5.0	28
41	Induction of p53-independent apoptosis by ectopic expression of HOXA5 in human liposarcomas. Scientific Reports, 2015, 5, 12580.	3.3	27
42	PKM2 is not required for pancreatic ductal adenocarcinoma. Cancer & Metabolism, 2018, 6, 17.	5.0	26
43	Tumor Derived Extracellular Vesicles Drive T Cell Exhaustion in Tumor Microenvironment through Sphingosine Mediated Signaling and Impacting Immunotherapy Outcomes in Ovarian Cancer. Advanced Science, 2022, 9, e2104452.	11.2	20
44	Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nature Communications, 2022, 13, 669.	12.8	19
45	Cell death-induced immunogenicity enhances chemoimmunotherapeutic response by converting immune-excluded into T-cell inflamed bladder tumors. Nature Communications, 2022, 13, 1487.	12.8	17
46	Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian Journal of Andrology, 2014, 16, 530.	1.6	12
47	Clinical Utility of Olaparib in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review of Current Evidence and Patient Selection. OncoTargets and Therapy, 2021, Volume 14, 4819-4832.	2.0	11
48	Genome-wide analysis of copy number alterations led to the characterisation of PDCD10 as oncogene in ovarian cancer. Translational Oncology, 2021, 14, 101013.	3.7	10
49	miR-1227 Targets SEC23A to Regulate the Shedding of Large Extracellular Vesicles. Cancers, 2021, 13, 5850.	3.7	2
50	Nuclear size of circulating tumor cells in advanced prostate cancer to reveal a potential biomarker for clinical outcomes and androgen receptor indifference Journal of Clinical Oncology, 2021, 39, 167-167.	1.6	1
51	An extracellular vesicle-based assay for noninvasive detection of metastases and monitoring prostate cancer Journal of Clinical Oncology, 2022, 40, e17004-e17004.	1.6	1
52	A morphological subset of circulating tumor cells in advanced prostate cancer reveals a potential biomarker for clinical outcomes Journal of Clinical Oncology, 2021, 39, e17008-e17008.	1.6	0
53	A translational phase 2 study of cabozantinib in men with metastatic castration resistant prostate cancer with visceral metastases with characterization of circulating tumor cells and large oncosomes Journal of Clinical Oncology, 2014, 32, e16080-e16080.	1.6	0