Zhaoyang Fan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7078591/zhaoyang-fan-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35
papers

2,350
citations

25
h-index

36
g-index

2,759
ext. papers

8.6
avg, IF

L-index

#	Paper	IF	Citations
35	Insight into the sulfur resistance of manganese oxide for NH3-SCR: Perspective from the valence state distributions. <i>Applied Surface Science</i> , 2022 , 153223	6.7	O
34	NOx removal by selective catalytic reduction with NH3 over MOFs-derived MnTi catalyst. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 108028	6.8	0
33	Ultrathin dense double-walled carbon nanotube membrane for enhanced lithium-sulfur batteries. <i>Journal of Nanoparticle Research</i> , 2020 , 22, 1	2.3	4
32	The insight into the role of Al2O3 in promoting the SO2 tolerance of MnOx for low-temperature selective catalytic reduction of NOx with NH3. <i>Chemical Engineering Journal</i> , 2020 , 398, 125572	14.7	32
31	Hierarchical NiO/CMK-3 Photocathode for a -Type Dye-Sensitized Solar Cell with Improved Photoelectrochemical Performance and Fast Hole Transfer. <i>Molecules</i> , 2020 , 25,	4.8	4
30	Charge-redistribution-induced new active sites on (0 0 1) facets of EMn2O3 for significantly enhanced selective catalytic reduction of NO by NH3. <i>Journal of Catalysis</i> , 2019 , 370, 30-37	7.3	35
29	Development and evaluation of hollow mesoporous silica microspheres bearing on enhanced oral delivery of curcumin. <i>Drug Development and Industrial Pharmacy</i> , 2019 , 45, 273-281	3.6	7
28	Stable 1T-phase MoS as an effective electron mediator promoting photocatalytic hydrogen production. <i>Nanoscale</i> , 2018 , 10, 9292-9303	7.7	49
27	Direct growth of 3D host on Cu foil for stable lithium metal anode. <i>Energy Storage Materials</i> , 2018 , 13, 323-328	19.4	66
26	WS /Graphitic Carbon Nitride Heterojunction Nanosheets Decorated with CdS Quantum Dots for Photocatalytic Hydrogen Production. <i>ChemSusChem</i> , 2018 , 11, 1187-1197	8.3	95
25	Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution. <i>Journal of Power Sources</i> , 2018 , 379, 249-260	8.9	29
24	NiyCo1-yMn2Ox microspheres for the selective catalytic reduction of NOx with NH3: The synergetic effects between Ni and Co for improving low-temperature catalytic performance. <i>Applied Catalysis A: General</i> , 2018 , 560, 1-11	5.1	20
23	Multiple carrier-transfer pathways in a flower-like InS/CdInS/InO ternary heterostructure for enhanced photocatalytic hydrogen production. <i>Nanoscale</i> , 2018 , 10, 7860-7870	7.7	67
22	Mnto Mixed Oxide Nanosheets Vertically Anchored on H2Ti3O7 Nanowires: Full Exposure of Active Components Results in Significantly Enhanced Catalytic Performance. <i>ChemCatChem</i> , 2018 , 10, 2833-2844	5.2	28
21	Sulfur and Water Resistance of Mn-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review. <i>Catalysts</i> , 2018 , 8, 11	4	59
20	"Fast SCR" reaction over Sm-modified MnOx-TiO2 for promoting reduction of NOx with NH3. <i>Applied Catalysis A: General</i> , 2018 , 564, 102-112	5.1	76
19	Formation mechanism of rectangular-ambulatory-plane TiO plates: an insight into the role of hydrofluoric acid. <i>Chemical Communications</i> , 2018 , 54, 7191-7194	5.8	10

18	Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance. <i>Chemical Engineering Journal</i> , 2018 , 348, 820-830	14.7	103
17	Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode. <i>Rare Metals</i> , 2018 , 37, 510-519	5.5	25
16	Efficient spatial charge separation and transfer in ultrathin g-C3N4 nanosheets modified with Cu2MoS4 as a noble metal-free co-catalyst for superior visible light-driven photocatalytic water splitting. <i>Catalysis Science and Technology</i> , 2018 , 8, 3883-3893	5.5	29
15	In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. <i>Chemical Engineering Journal</i> , 2017 , 322, 435-444	14.7	161
14	MnM2O4 microspheres (M = Co, Cu, Ni) for selective catalytic reduction of NO with NH3: Comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. <i>Chemical Engineering Journal</i> , 2017 , 325, 91-100	14.7	66
13	Rationally Designed Porous MnO-FeO Nanoneedles for Low-Temperature Selective Catalytic Reduction of NO by NH. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 16117-16127	9.5	99
12	Fabrication of g-C3N4/Au/C-TiO2 Hollow Structures as Visible-Light-Driven Z-Scheme Photocatalysts with Enhanced Photocatalytic H2 Evolution. <i>ChemCatChem</i> , 2017 , 9, 3752-3761	5.2	92
11	Porous MnOx for low-temperature NH3-SCR of NOx: the intrinsic relationship between surface physicochemical property and catalytic activity. <i>Journal of Nanoparticle Research</i> , 2017 , 19, 1	2.3	10
10	Mn/CeO2 catalysts for SCR of NOx with NH3: comparative study on the effect of supports on low-temperature catalytic activity. <i>Applied Surface Science</i> , 2017 , 411, 338-346	6.7	105
9	Eu-Mn-Ti mixed oxides for the SCR of NOx with NH3: The effects of Eu-modification on catalytic performance and mechanism. <i>Fuel Processing Technology</i> , 2017 , 167, 322-333	7.2	48
8	Highly Efficient Photocatalyst Based on a CdS Quantum Dots/ZnO Nanosheets 0D/2D Heterojunction for Hydrogen Evolution from Water Splitting. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 25377-25386	9.5	173
7	Rational design of CdS@ZnO core-shell structure via atomic layer deposition for drastically enhanced photocatalytic H2 evolution with excellent photostability. <i>Nano Energy</i> , 2017 , 39, 183-191	17.1	156
6	Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction. <i>Nanotechnology</i> , 2016 , 27, 445402	3.4	17
5	A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. <i>Carbon</i> , 2016 , 99, 633-641	10.4	69
4	Ultrathin NiO nanosheets anchored on a highly ordered nanostructured carbon as an enhanced anode material for lithium ion batteries. <i>Nano Energy</i> , 2015 , 16, 152-162	17.1	141
3	Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. <i>Nanoscale</i> , 2014 , 6, 5245-50	7.7	145
2	A Nanosheets-on-Channel Architecture Constructed from MoS2 and CMK-3 for High-Capacity and Long-Cycle-Life Lithium Storage. <i>Advanced Energy Materials</i> , 2014 , 4, 1400902	21.8	166
1	Hierarchical NiCo2O4 [email[protected] Nanotubes with Ultrahigh Capacitance and Long Cycle Stability As Electrochemical Pseudocapacitor Materials. <i>Chemistry of Materials</i> , 2014 , 26, 4354-4360	9.6	164