Benjamin Doerr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7078580/publications.pdf

Version: 2024-02-01

304602 265120 2,739 108 22 42 citations h-index g-index papers 111 111 111 409 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multiplicative Drift Analysis. Algorithmica, 2012, 64, 673-697.	1.0	187
2	Theory of Randomized Search Heuristics. Theoretical Computer Science, 2011, , .	1.2	175
3	From black-box complexity to designing new genetic algorithms. Theoretical Computer Science, 2015, 567, 87-104.	0.5	166
4	Fast genetic algorithms. , 2017, , .		143
5	Optimal Static and Self-Adjusting Parameter Choices for the \$\$(1+(lambda ,lambda))\$\$ (1 + (\hat{l} » , \hat{l} »)) Genetic Algorithm. Algorithmica, 2018, 80, 1658-1709.	1.0	96
6	Crossover can provably be useful in evolutionary computation. Theoretical Computer Science, 2012, 425, 17-33.	0.5	81
7	Adaptive Drift Analysis. Algorithmica, 2013, 65, 224-250.	1.0	80
8	Mutation Rate Matters Even When Optimizing Monotonic Functions. Evolutionary Computation, 2013, 21, 1-27.	2.3	67
9	Optimizing linear functions with the <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo stretchy="false">(</mml:mo><mml:mi>1<mml:mo><mml:mo><mml:mi>1\cdots</mml:mi></mml:mo></mml:mo></mml:mi></mml:math>	j ET @a 1 1	0. 78 4314 rgB
10	different instances. Theoretical Computer Science, 2015, 561, 3-23. Optimal Fixed and Adaptive Mutation Rates for the LeadingOnes Problem., 2010, , 1-10.		54
11	Probabilistic Tools for the Analysis of Randomized Optimization Heuristics. Natural Computing Series, 2020, , 1-87.	2.2	50
12	Faster black-box algorithms through higher arity operators. , 2011, , .		47
13			
	Runtime analysis of the (1 + ($\langle i \rangle \hat{l} \rangle$, $\hat{l} \rangle \langle i \rangle$)) genetic algorithm on random satisfiable 3-CNF formulas., 2017,		46
14		0.5	46
14 15	Analyzing randomized search heuristics via stochastic domination. Theoretical Computer Science,	0.5	
	Analyzing randomized search heuristics via stochastic domination. Theoretical Computer Science, 2019, 773, 115-137. Analyzing Randomized Search Heuristics: Tools from Probability Theory. Theoretical Computer		45
15	Analyzing randomized search heuristics via stochastic domination. Theoretical Computer Science, 2019, 773, 115-137. Analyzing Randomized Search Heuristics: Tools from Probability Theory. Theoretical Computer Science, 2011, , 1-20. The ($\$\1 +lambda $\$\1 + $\$$) ÂEvolutionary Algorithm with Self-Adjusting Mutation Rate. Algorithmica,	1.2	45 42

#	Article	IF	CITATIONS
19	On the runtime analysis of selection hyper-heuristics with adaptive learning periods. , 2018, , .		38
20	Ranking-Based Black-Box Complexity. Algorithmica, 2014, 68, 571-609.	1.0	35
21	Optimal parameter choices via precise black-box analysis. Theoretical Computer Science, 2020, 801, 1-34.	0.5	35
22	More effective crossover operators for the all-pairs shortest path problem. Theoretical Computer Science, 2013, 471, 12-26.	0.5	31
23	A tight runtime analysis for the cGA on jump functions. , 2019, , .		31
24	Does comma selection help to cope with local optima?. , 2020, , .		30
25	Fast mutation in crossover-based algorithms. , 2020, , .		30
26	Improved analysis methods for crossover-based algorithms. , 2009, , .		27
27	Drift analysis and linear functions revisited. , 2010, , .		27
28	Tight Analysis of the $(1+1)$ -EA for the Single Source Shortest Path Problem. Evolutionary Computation, 2011, 19, 673-691.	2.3	27
29	Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms. IEEE Transactions on Evolutionary Computation, 2020, 24, 1140-1149.	7.5	27
30	Lazy parameter tuning and control., 2021,,.		27
31	Runtime analysis for self-adaptive mutation rates. , 2018, , .		26
32	Money for Nothing., 2015,,.		25
33	The Impact of Random Initialization on the Runtime of Randomized Search Heuristics. Algorithmica, 2016, 75, 529-553.	1.0	25
34	Significance-Based Estimation-of-Distribution Algorithms. IEEE Transactions on Evolutionary Computation, 2020, 24, 1025-1034.	7.5	25
35	Theoretical analyses of multi-objective evolutionary algorithms on multi-modal objectives. , 2021, , .		25
36	Black-box complexities of combinatorial problems. Theoretical Computer Science, 2013, 471, 84-106.	0.5	24

#	Article	IF	CITATIONS
37	The Runtime of the Compact Genetic Algorithm on Jump Functions. Algorithmica, 2021, 83, 3059-3107.	1.0	24
38	Edge-based representation beats vertex-based representation in shortest path problems. , 2010, , .		23
39	A lower bound for the discrepancy of a random point set. Journal of Complexity, 2014, 30, 16-20.	0.7	23
40	A tight runtime analysis for the (î½ + î») EA. , 2018, , .		23
41	Playing Mastermind with Constant-Size Memory. Theory of Computing Systems, 2014, 55, 658-684.	0.7	22
42	The efficiency threshold for the offspring population size of the (<code><i>Â</i></code> μ , λ <code></code>) EA. , 2019, , .		22
43	Runtime Analysis for Self-adaptive Mutation Rates. Algorithmica, 2021, 83, 1012-1053.	1.0	21
44	Multiplicative up-drift., 2019,,.		20
45	Reducing the arity in unbiased black-box complexity. Theoretical Computer Science, 2014, 545, 108-121.	0.5	19
46	An elementary analysis of the probability that a binomial random variable exceeds its expectation. Statistics and Probability Letters, 2018, 139, 67-74.	0.4	19
47	A tight runtime analysis for the (1 + (l̂», l̂»)) GA on leadingones. , 2019, , .		19
48	Runtime Analysis of a Heavy-Tailed \$\$(1+(lambda ,lambda))\$\$ Genetic Algorithm on Jump Functions. Lecture Notes in Computer Science, 2020, , 545-559.	1.0	19
49	Working principles of binary differential evolution. Theoretical Computer Science, 2020, 801, 110-142.	0.5	18
50	Generalized jump functions., 2021,,.		18
51	Evolutionary algorithms and dynamic programming. Theoretical Computer Science, 2011, 412, 6020-6035.	0.5	17
52	Detecting structural breaks in time series via genetic algorithms. Soft Computing, 2017, 21, 4707-4720.	2.1	17
53	The (1 + (<i>î»,λ</i>)) GA is even faster on multimodal problems. , 2020, , .		17
54	Playing Mastermind With Many Colors. Journal of the ACM, 2016, 63, 1-23.	1.8	16

#	Article	IF	CITATIONS
55	The Unrestricted Black-Box Complexity of Jump Functions. Evolutionary Computation, 2016, 24, 719-744.	2.3	16
56	The unbiased black-box complexity of partition is polynomial. Artificial Intelligence, 2014, 216, 275-286.	3.9	15
57	The query complexity of a permutation-based variant of Mastermind. Discrete Applied Mathematics, 2019, 260, 28-50.	0.5	15
58	Multiplicative Up-Drift. Algorithmica, 2021, 83, 3017-3058.	1.0	15
59	Lower bounds from fitness levels made easy. , 2021, , .		15
60	Unbiased black-box complexities of jump functions., 2014,,.		14
61	An exponential lower bound for the runtime of the compact genetic algorithm on jump functions. , 2019, , .		13
62	A rigorous runtime analysis of the 2-MMAS _{ib} on jump functions., 2021,,.		13
63	Self-Adjusting Mutation Rates with Provably Optimal Success Rules. Algorithmica, 2021, 83, 3108-3147.	1.0	13
64	First Steps Towards a Runtime Analysis When Starting with a Good Solution. Lecture Notes in Computer Science, 2020, , 560-573.	1.0	13
65	The Query Complexity of Finding a Hidden Permutation. Lecture Notes in Computer Science, 2013, , 1-11.	1.0	13
66	From understanding genetic drift to a smart-restart parameter-less compact genetic algorithm. , 2020, , .		13
67	A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization. ACM Transactions on Evolutionary Learning, 2021, 1 , 1 -43.	2.7	13
68	Fast Mutation in Crossover-Based Algorithms. Algorithmica, 2022, 84, 1724-1761.	1.0	13
69	Monotonic functions in EC. , 2014, , .		12
70	Unbiased Black-Box Complexities of Jump Functions. Evolutionary Computation, 2015, 23, 641-670.	2.3	12
71	A Rigorous Runtime Analysis of the $\$(1 + (lambda, lambda))\$$ GA on Jump Functions. Algorithmica, 2022, 84, 1573-1602.	1.0	12
72	Lower bounds for the runtime of a global multi-objective evolutionary algorithm. , 2013, , .		11

#	Article	IF	CITATIONS
73	Does Comma Selection Help to Cope with Local Optima?. Algorithmica, 2022, 84, 1659-1693.	1.0	11
74	Improved approximation algorithms for the Min–Max Selecting Items problem. Information Processing Letters, 2013, 113, 747-749.	0.4	10
75	Too fast unbiased black-box algorithms. , 2011, , .		9
76	Solving Problems with Unknown Solution Length at Almost No Extra Cost. Algorithmica, 2019, 81, 703-748.	1.0	9
77	The recovery of ridge functions on the hypercube suffers from the curse of dimensionality. Journal of Complexity, 2021, 63, 101521.	0.7	9
78	Choosing the Right Algorithm With Hints From Complexity Theory. , 2021, , .		9
79	Fixed-target runtime analysis. , 2020, , .		9
80	Working principles of binary differential evolution. , 2018, , .		8
81	A Tight Runtime Analysis for the \$\${(mu + lambda)}\$\$ÂEA. Algorithmica, 2021, 83, 1054-1095.	1.0	8
82	A simplified run time analysis of the univariate marginal distribution algorithm on LeadingOnes. Theoretical Computer Science, 2021, 851, 121-128.	0.5	8
83	Precise Runtime Analysis for Plateaus. Lecture Notes in Computer Science, 2018, , 117-128.	1.0	8
84	Stagnation Detection Meets Fast Mutation. Lecture Notes in Computer Science, 2022, , 191-207.	1.0	8
85	The Univariate Marginal Distribution Algorithm Copes Well with Deception and Epistasis. Evolutionary Computation, 2021, 29, 543-563.	2.3	7
86	Lower Bounds for Non-Elitist Evolutionary Algorithms via Negative Multiplicative Drift. Evolutionary Computation, 2021, 29, 305-329.	2.3	7
87	Precise Runtime Analysis for Plateau Functions. ACM Transactions on Evolutionary Learning, 2021, 1, 1-28.	2.7	7
88	Exponential upper bounds for the runtime of randomized search heuristics. Theoretical Computer Science, 2021, 851, 24-38.	0.5	6
89	Lower Bounds for Non-elitist Evolutionary Algorithms via Negative Multiplicative Drift. Lecture Notes in Computer Science, 2020, , 604-618.	1.0	6
90	Fixed-Target Runtime Analysis. Algorithmica, 2022, 84, 1762-1793.	1.0	4

#	Article	IF	Citations
91	Black-box complexity., 2014, , .		3
92	Runtime analysis of evolutionary algorithms via symmetry arguments. Information Processing Letters, 2021, 166, 106064.	0.4	3
93	Exponential Upper Bounds for the Runtime of Randomized Search Heuristics. Lecture Notes in Computer Science, 2020, , 619-633.	1.0	3
94	The univariate marginal distribution algorithm copes well with deception and epistasis., 2020,,.		3
95	Simulated annealing is a polynomial-time approximation scheme for the minimum spanning tree problem. , 2022, , .		2
96	Towards a stronger theory for permutation-based evolutionary algorithms. , 2022, , .		2
97	Guest Editorial: Theory of Evolutionary Computation. Algorithmica, 2016, 75, 425-427.	1.0	1
98	Improved Protocols and Hardness Results for the Two-Player Cryptogenography Problem. IEEE Transactions on Information Theory, 2020, 66, 5729-5741.	1.5	1
99	Runtime analysis via symmetry arguments. , 2021, , .		1
100	On negative dependence properties of Latin hypercube samples and scrambled nets. Journal of Complexity, 2021, 67, 101589.	0.7	1
101	Sharp bounds for genetic drift in estimation of distribution algorithms (Hot-off-the-press track at) Tj ETQq $1\ 1\ 0.75$	84314 rgB	T <u>†</u> Overlock
102	An Extended Jump Functions Benchmark for the Analysis of Randomized Search Heuristics. Algorithmica, 2024, 86, 1-32.	1.0	1
103	The unrestricted black-box complexity of jump functions. , 2017, , .		O
104	Theory for non-theoreticians. , 2018, , .		0
105	Theory for non-theoreticians. , 2019, , .		0
106	A gentle introduction to theory (for non-theoreticians). , 2021, , .		0
107	A gentle introduction to theory (for non-theoreticians). , 2020, , .		O
108	Lower Bounds from Fitness Levels Made Easy. Algorithmica, 2024, 86, 367-395.	1.0	0