Gonçalo Homem de Almeida Correia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7078131/publications.pdf Version: 2024-02-01

Gonçalo Homem de Almeida

#	Article	IF	CITATIONS
1	The Impact of Cooperative Adaptive Cruise Control on Traffic-Flow Characteristics. IEEE Transactions on Intelligent Transportation Systems, 2006, 7, 429-436.	8.0	1,128
2	Policy and society related implications of automated driving: A review of literature and directions for future research. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2017, 21, 324-348.	4.2	582
3	Optimization approach to depot location and trip selection in one-way carsharing systems. Transportation Research, Part E: Logistics and Transportation Review, 2012, 48, 233-247.	7.4	284
4	Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study. Journal of Advanced Transportation, 2018, 2018, 1-22.	1.7	200
5	Comparing Optimal Relocation Operations With Simulated Relocation Policies in One-Way Carsharing Systems. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 1667-1675.	8.0	171
6	User acceptance of automated shuttles in Berlin-Schöneberg: A questionnaire study. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58, 843-854.	3.7	166
7	Trip pricing of one-way station-based carsharing networks with zone and time of day price variations. Transportation Research Part B: Methodological, 2015, 81, 461-482.	5.9	153
8	Effects of Cooperative Adaptive Cruise Control on traffic flow stability. , 2010, , .		149
9	Preferences of travellers for using automated vehicles as last mile public transport of multimodal train trips. Transportation Research, Part A: Policy and Practice, 2016, 94, 1-16.	4.2	141
10	Transit-oriented development: A review of research achievements and challenges. Transportation Research, Part A: Policy and Practice, 2020, 132, 110-130.	4.2	132
11	Solving the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP): A model to explore the impacts of self-driving vehicles on urban mobility. Transportation Research Part B: Methodological, 2016, 87, 64-88.	5.9	128
12	A multi-level model on automated vehicle acceptance (MAVA): a review-based study. Theoretical Issues in Ergonomics Science, 2019, 20, 682-710.	1.8	119
13	Carpooling and carpool clubs: Clarifying concepts and assessing value enhancement possibilities through a Stated Preference web survey in Lisbon, Portugal. Transportation Research, Part A: Policy and Practice, 2011, 45, 81-90.	4.2	112
14	Exploring the use of automated vehicles as last mile connection of train trips through an agent-based simulation model: An application to Delft, Netherlands. International Journal of Transportation Science and Technology, 2017, 6, 28-41.	3.6	112
15	An agentâ€based simulation model to assess the impacts of introducing a sharedâ€taxi system: an application to Lisbon (Portugal). Journal of Advanced Transportation, 2015, 49, 475-495.	1.7	105
16	Towards a quantitative method to analyze the long-term innovation diffusion of automated vehicles technology using system dynamics. Transportation Research Part C: Emerging Technologies, 2018, 86, 300-327.	7.6	103
17	Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips. Transportation Research, Part E: Logistics and Transportation Review, 2016, 93, 115-129.	7.4	101
18	Solving the station-based one-way carsharing network planning problem with relocations and non-linear demand. Transportation Research Part C: Emerging Technologies, 2018, 90, 1-17.	7.6	100

Gon§alo Homem de Almeida

#	Article	IF	CITATIONS
19	A MIP model for locating slow-charging stations for electric vehicles in urban areas accounting for driver tours. Transportation Research, Part E: Logistics and Transportation Review, 2015, 75, 188-201.	7.4	99
20	Exploring the Performance of Different On-Demand Transit Services Provided by a Fleet of Shared Automated Vehicles: An Agent-Based Model. Journal of Advanced Transportation, 2019, 2019, 1-16.	1.7	89
21	The Added Value of Accounting For Users' Flexibility and Information on the Potential of a Station-Based One-Way Car-Sharing System: An Application in Lisbon, Portugal. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2014, 18, 299-308.	4.2	88
22	Improving Traffic Flow Efficiency by In-Car Advice on Lane, Speed, and Headway. IEEE Transactions on Intelligent Transportation Systems, 2014, 15, 1597-1606.	8.0	70
23	On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey. Transportation Research, Part A: Policy and Practice, 2019, 119, 359-382.	4.2	69
24	Automated taxis' dial-a-ride problem with ride-sharing considering congestion-based dynamic travel times. Transportation Research Part C: Emerging Technologies, 2020, 112, 260-281.	7.6	69
25	Electric carsharing and micromobility: A literature review on their usage pattern, demand, and potential impacts. International Journal of Sustainable Transportation, 2022, 16, 269-286.	4.1	69
26	Intelligent road traffic status detection system through cellular networks handover information: An exploratory study. Transportation Research Part C: Emerging Technologies, 2013, 32, 76-88.	7.6	66
27	Insights into carsharing demand dynamics: Outputs of an agent-based model application to Lisbon, Portugal. International Journal of Sustainable Transportation, 2017, 11, 148-159.	4.1	63
28	Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions. European Journal of Operational Research, 2020, 287, 1075-1091.	5.7	60
29	Using metro smart card data to model location choice of after-work activities: An application to Shanghai. Journal of Transport Geography, 2017, 63, 40-47.	5.0	58
30	Assessing the viability of enabling a round-trip carsharing system to accept one-way trips: Application to Logan Airport in Boston. Transportation Research Part C: Emerging Technologies, 2015, 56, 359-372.	7.6	50
31	Analysis of the effect of charging needs on battery electric vehicle drivers' route choice behaviour: A case study in the Netherlands. Transportation Research, Part D: Transport and Environment, 2020, 78, 102206.	6.8	50
32	Performance analysis and fleet requirements of automated demand-responsive transport systems as an urban public transport service. International Journal of Transportation Science and Technology, 2018, 7, 151-167.	3.6	49
33	Environmental and financial impacts of adopting alternative vehicle technologies and relocation strategies in station-based one-way carsharing: An application in the city of Lisbon, Portugal. Transportation Research, Part D: Transport and Environment, 2017, 57, 350-362.	6.8	46
34	Pedestrians' road crossing behaviour in front of automated vehicles: Results from a pedestrian simulation experiment using agent-based modelling. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 69, 101-119.	3.7	46
35	Impact of Automated Vehicles on Travel Mode Preference for Different Trip Purposes and Distances. Transportation Research Record, 2019, 2673, 607-616.	1.9	44
36	Testing the Validity of the MIP Approach for Locating Carsharing Stations in One-way Systems. Procedia, Social and Behavioral Sciences, 2012, 54, 138-148.	0.5	41

#	Article	IF	CITATIONS
37	Incorporating the travellers' experience value in assessing the quality of transit nodes: A Rotterdam case study. Case Studies on Transport Policy, 2018, 6, 564-576.	2.5	40
38	Design and operation of dedicated lanes for connected and automated vehicles on motorways: A conceptual framework and research agenda. Transportation Research Part C: Emerging Technologies, 2020, 117, 102664.	7.6	40
39	Long-term vehicle reservations in one-way free-floating carsharing systems: A variable quality of service model. Transportation Research Part C: Emerging Technologies, 2019, 98, 298-322.	7.6	39
40	Understanding travellers' preferences for different types of trip destination based on mobile internet usage data. Transportation Research Part C: Emerging Technologies, 2018, 90, 247-259.	7.6	38
41	Using latent attitudinal variables estimated through a structural equations model for understanding carpooling propensity. Transportation Planning and Technology, 2013, 36, 499-519.	2.0	37
42	Designing an Automated Demand-Responsive Transport System: Fleet Size and Performance Analysis for a Campus–Train Station Service. Transportation Research Record, 2016, 2542, 75-83.	1.9	37
43	Opportunities for integration between Mobility as a Service (MaaS) and freight transport: A conceptual model. Sustainable Cities and Society, 2021, 74, 103212.	10.4	36
44	Exploring cellular network handover information for urban mobility analysis. Journal of Transport Geography, 2013, 31, 164-170.	5.0	34
45	Analysis of the pattern and intensity of urban activities through aggregate cellphone usage. Transportmetrica A: Transport Science, 2015, 11, 502-524.	2.0	33
46	An Explanatory Model Approach for the Spatial Distribution of Free-Floating Carsharing Bookings: A Case-Study of German Cities. Sustainability, 2017, 9, 1290.	3.2	32
47	The Impact of a Congestion Assistant on Traffic Flow Efficiency and Safety in Congested Traffic Caused by a Lane Drop. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2010, 14, 197-208.	4.2	30
48	Finding the relevance of staff-based vehicle relocations in one-way carsharing systems through the use of a simulation-based optimization tool. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2019, 23, 583-604.	4.2	30
49	Understanding ride-sourcing drivers' behaviour and preferences: Insights from focus groups analysis. Research in Transportation Business and Management, 2020, 37, 100516.	2.9	29
50	Assessing the impacts of shared autonomous vehicles on congestion and curb use: A traffic simulation study in The Hague, Netherlands. International Journal of Transportation Science and Technology, 2020, 9, 195-206.	3.6	28
51	The impact of a dedicated lane for connected and automated vehicles on the behaviour of drivers of manual vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 82, 141-153.	3.7	28
52	Continuous Traffic Flow Modeling of Driver Support Systems in Multiclass Traffic With Intervehicle Communication and Drivers in the Loop. IEEE Transactions on Intelligent Transportation Systems, 2009, 10, 649-657.	8.0	25
53	Simulating Carsharing Operations through Agent-based Modelling: An Application to the City of Lisbon, Portugal. Transportation Research Procedia, 2014, 3, 828-837.	1.5	25
54	The Deployment of Advanced Driver Assistance Systems in Europe. SSRN Electronic Journal, 0, , .	0.4	25

#	Article	IF	CITATIONS
55	Relocating shared automated vehicles under parking constraints: assessing the impact of different strategies for on-street parking. Transportation, 2021, 48, 1931-1965.	4.0	25
56	A MIP Model to Optimize Real Time Maintenance and Relocation Operations in One-way Carsharing Systems. Transportation Research Procedia, 2015, 10, 384-392.	1.5	22
57	Passenger opinions of the perceived safety and interaction with automated shuttles: A test ride study with â€ ⁻ hidden' safety steward. Transportation Research, Part A: Policy and Practice, 2020, 138, 508-524.	4.2	22
58	An innovative approach to solve the carsharing demand-supply imbalance problem under demand uncertainty. Transportation Research Part C: Emerging Technologies, 2021, 132, 103369.	7.6	22
59	Valuation of Travel Attributes for Using Automated Vehicles as Egress Transport of Multimodal Train Trips. Transportation Research Procedia, 2015, 10, 462-471.	1.5	21
60	A conceptual model for carpooling systems simulation. Journal of Simulation, 2009, 3, 61-68.	1.5	19
61	The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic. Sustainability, 2020, 12, 1226.	3.2	19
62	Descriptive modeling of freight tour formation: A shipment-based approach. Transportation Research, Part E: Logistics and Transportation Review, 2020, 140, 101989.	7.4	19
63	Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review. Sustainability, 2020, 12, 10504.	3.2	18
64	Longitudinal macro-analysis of car-use changes resulting from a TOD-type project: The case of Metro do Porto (Portugal). Journal of Transport Geography, 2021, 92, 103036.	5.0	18
65	Dynamic planning for simultaneous recharging and relocation of shared electric taxies: A sequential MILP approach. Transportation Research Part C: Emerging Technologies, 2021, 125, 102933.	7.6	18
66	Applying a Model for Trip Assignment and Dynamic Routing of Automated Taxis with Congestion: System Performance in the City of Delft, The Netherlands. Transportation Research Record, 2018, 2672, 588-598.	1.9	17
67	Fixed-Route vs. Demand-Responsive Transport Feeder Services: An Exploratory Study Using an Agent-Based Model. Journal of Advanced Transportation, 2022, 2022, 1-20.	1.7	17
68	Applying a structured simulation-based methodology to assess carpooling time–space potential. Transportation Planning and Technology, 2010, 33, 515-540.	2.0	16
69	Interrelationships among predictors of automated vehicle acceptance: a structural equation modelling approach. Theoretical Issues in Ergonomics Science, 0, , 1-26.	1.8	16
70	Performance of one-way carsharing systems under combined strategy of pricing and relocations. Transportmetrica B, 2021, 9, 134-152.	2.3	16
71	A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously. Transportation Research, Part E: Logistics and Transportation Review, 2022, 161, 102711.	7.4	16
72	Review of Whole System Simulation Methodologies for Assessing Mobility as a Service (MaaS) as an Enabler for Sustainable Urban Mobility. Sustainability, 2021, 13, 5591.	3.2	15

Gon§alo Homem de Almeida

#	Article	IF	CITATIONS
73	Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement. Transportation Research, Part A: Policy and Practice, 2021, 153, 235-260.	4.2	15
74	Operationalizing an indicator of sufficient accessibility – a case study for the city of Rotterdam. Case Studies on Transport Policy, 2020, 8, 1360-1370.	2.5	14
75	Freight Transport Decarbonization: A Systematic Literature Review of System Dynamics Models. Sustainability, 2022, 14, 3625.	3.2	14
76	Spatial impact of automated driving in urban areas. Journal of Simulation, 2020, 14, 295-303.	1.5	13
77	Optimizing Road Networks for Automated Vehicles with Dedicated Links, Dedicated Lanes, and Mixed-Traffic Subnetworks. Journal of Advanced Transportation, 2021, 2021, 1-17.	1.7	12
78	Designing a Network of Electric Charging Stations to Mitigate Vehicle Emissions. , 2020, , .		12
79	A mathematical programming model for optimal fleet management of electric car-sharing systems with Vehicle-to-Grid operations. Journal of Cleaner Production, 2022, 368, 133147.	9.3	12
80	Setting Speed Limits on Rural Two-Lane Highways by Modeling the Relationship between Expert Judgment and Measurable Roadside Characteristics. Journal of Transportation Engineering, 2011, 137, 184-192.	0.9	11
81	Optimizing the Use of Electric Vehicles in a Regional Car Rental Fleet. Transportation Research Record, 2014, 2454, 76-83.	1.9	11
82	Effects of Coordinated Formation of Vehicle Platooning in a Fleet of Shared Automated Vehicles: An Agent-based model. Transportation Research Procedia, 2020, 47, 377-384.	1.5	11
83	Modeling Location Choice of Taxi Drivers for Passenger Pickup Using GPS Data. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 70-90.	3.8	11
84	A flow-based integer programming approach to design an interurban shared automated vehicle system and assess its financial viability. Transportation Research Part C: Emerging Technologies, 2021, 128, 103092.	7.6	11
85	Life cycle assessment of shared and private use of automated and electric vehicles on interurban mobility. Applied Energy, 2022, 310, 118589.	10.1	11
86	eHUBs—Identifying the potential early and late adopters of shared electric mobility hubs. International Journal of Sustainable Transportation, 2023, 17, 199-218.	4.1	11
87	Electric Vehicles Charging Network Planning. Advances in Intelligent Systems and Computing, 2014, , 85-100.	0.6	10
88	The deployment of automated vehicles in urban transport systems: a methodology to design dedicated zones. Transportation Research Procedia, 2017, 27, 230-237.	1.5	10
89	A Network-Based Model of Passenger Transfer Flow between Bus and Metro: An Application to the Public Transport System of Beijing. Journal of Advanced Transportation, 2020, 2020, 1-12.	1.7	8
90	Exact Formulation and Comparison Between the User Optimum and System Optimum Solution for Routing Privately Owned Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 4567-4578.	8.0	7

#	Article	IF	CITATIONS
91	Road Network Design in a Developing Country Using Mobile Phone Data: An Application to Senegal. IEEE Intelligent Transportation Systems Magazine, 2020, 12, 36-49.	3.8	7
92	Building Automation into Urban and Metropolitan Mobility Planning. Lecture Notes in Mobility, 2019, , 123-136.	0.2	6
93	On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey – A comment. Transportation Research, Part A: Policy and Practice, 2020, 132, 324-328.	4.2	6
94	An optimization model for vehicle routing of automated taxi trips with dynamic travel times. Transportation Research Procedia, 2017, 27, 736-743.	1.5	5
95	Relationships between mobile phone usage and activity-travel behavior: A review of the literature and an example. Advances in Transport Policy and Planning, 2019, 3, 81-105.	1.5	4
96	Explanatory and Causal Analysis of the MIBEL Electricity Market Spot Price. , 2019, , .		4
97	Multi-stage optimal design of road networks for automated vehicles with elastic multi-class demand. Computers and Operations Research, 2021, 136, 105483.	4.0	4
98	Potential of peer-to-peer bike sharing for relieving bike parking capacity shortage at train stations: an explorative analysis for the Netherlands. , 2018, 18, .		4
99	Adoption of Shared Automated Vehicles as Access and Egress Mode of Public Transport: A Research Agenda. , 2020, , .		2
100	Automated vehicles (AV) dedicated networks and their effects on the traveling of conventional vehicle drivers. Transportation Research Procedia, 2021, 52, 653-660.	1.5	1
101	An optimal charging location model of an automated electric taxi system considering two types of charging. , 2020, , .		1
102	Stochastic and dynamic routing with flexible deliveries for an e-grocer. , 2021, , .		0
103	The Multi-period Petrol Station Replenishment Problem: Formulation and Solution Methods. Lecture Notes in Computer Science, 2020, , 600-615.	1.3	0